Skip to content

An Approach to Develop Printable Strain-Hardening Cementitious Composites (2019-03)

10.1016/j.matdes.2019.107651

 Figueiredo Stefan,  Rodríguez Claudia,  Ahmed Zeeshan,  Bos Derk,  Xu Yading,  Salet Theo,  Çopuroğlu Oğuzhan,  Schlangen Erik,  Bos Freek
Journal Article - Materials & Design, Vol. 169

Abstract

New additive manufacturing methods for cementitious materials hold a high potential to increase automation in the construction industry. However, these methods require new materials to be developed that meet performance requirements related to specific characteristics of the manufacturing process. The appropriate characterization methods of these materials are still a matter of debate. This study proposes a rheology investigation to systematically develop a printable strain hardening cementitious composite mix design. Two known mixtures were employed and the influence of several parameters, such as the water-to-solid ratio, fibre volume percentage and employment of chemical admixtures, were investigated using a ram extruder and Benbow-Bridgwater equation. Through printing trials, rheology parameters as the initial bulk and shear yield stress were correlated with variables commonly employed to assess printing quality of cementitious materials. The rheology properties measured were used to predict the number of layers a developed mixture could support. Selected mixtures had their mechanical performance assessed through four-point bending, uni-axial tensile and compressive strength tests, to confirm that strain hardening behaviour was obtained. It was concluded that the presented experimental and theoretical framework are promising tools, as the bulk yield stress seems to predict buildability, while shear yield stress may indicate a threshold for pumpability.

29 References

  1. Asprone Domenico, Auricchio Ferdinando, Menna Costantino, Mercuri Valentina (2018-03)
    3D Printing of Reinforced Concrete Elements:
    Technology and Design Approach
  2. Bos Freek, Ahmed Zeeshan, Jutinov Evgeniy, Salet Theo (2017-11)
    Experimental Exploration of Metal-Cable as Reinforcement in 3D Printed Concrete
  3. Bos Freek, Bosco Emanuela, Salet Theo (2018-11)
    Ductility of 3D Printed Concrete Reinforced with Short Straight Steel-Fibers
  4. Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
    Additive Manufacturing of Concrete in Construction:
    Potentials and Challenges of 3D Concrete Printing
  5. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  6. Buswell Richard, Soar Rupert, Gibb Alistar, Thorpe Tony (2006-06)
    Freeform Construction:
    Mega-Scale Rapid Manufacturing for Construction
  7. Delgado Camacho Daniel, Clayton Patricia, Brien William, Seepersad Carolyn et al. (2018-02)
    Applications of Additive Manufacturing in the Construction Industry:
    A Forward-Looking Review
  8. Duballet Romain, Baverel Olivier, Dirrenberger Justin (2018-11)
    Space-Truss-Masonry-Walls with Robotic Mortar-Extrusion
  9. Ghaffar Seyed, Corker Jorge, Fan Mizi (2018-05)
    Additive Manufacturing Technology and Its Implementation in Construction as an Eco-Innovative Solution
  10. Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
    Large-Scale 3D Printing of Ultra-High-Performance Concrete:
    A New Processing Route for Architects and Builders
  11. Hack Norman, Lauer Willi (2014-04)
    Mesh Mould:
    Robotically Fabricated Spatial Meshes as Reinforced Concrete Formwork
  12. Hambach Manuel, Volkmer Dirk (2017-02)
    Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste
  13. Jassmi Hamad, Najjar Fady, Mourad Abdel-Hamid (2018-04)
    Large-Scale 3D Printing:
    The Way Forward
  14. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  15. Khoshnevis Behrokh (2003-11)
    Automated Construction by Contour Crafting:
    Related Robotics and Information Technologies
  16. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  17. Lloret-Fritschi Ena, Reiter Lex, Wangler Timothy, Gramazio Fabio et al. (2017-03)
    Smart Dynamic Casting:
    Slipforming with Flexible Formwork
  18. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  19. Nematollahi Behzad, Xia Ming, Sanjayan Jay (2017-07)
    Current Progress of 3D Concrete Printing Technologies
  20. Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
    Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material
  21. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  22. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  23. Soltan Daniel, Li Victor (2018-03)
    A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing
  24. Subrin Kévin, Bressac Thomas, Garnier Sébastien, Ambiehl Alexandre et al. (2018-09)
    Improvement of the Mobile Robot Location Dedicated for Habitable House Construction by 3D Printing
  25. Tay Yi, Panda Biranchi, Paul Suvash, Mohamed Nisar et al. (2017-05)
    3D Printing Trends in Building and Construction Industry:
    A Review
  26. Weng Yiwei, Li Mingyang, Liu Zhixin, Lao Wenxin et al. (2018-12)
    Printability and Fire Performance of a Developed 3D Printable Fiber-Reinforced Cementitious Composites under Elevated Temperatures
  27. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  28. Wu Peng, Wang Jun, Wang Xiangyu (2016-04)
    A Critical Review of the Use of 3D Printing in the Construction Industry
  29. Zhou Xiangming, Li Zongjin, Fan Mizi, Chen Huapeng (2013-01)
    Rheology of Semi-Solid Fresh Cement-Pastes and Mortars in Orifice-Extrusion

172 Citations

  1. Tulliani Jean-Marc (2025-11)
    Latest Developments in 3D-Printed Engineered Cementitious Composites:
    Technologies, Prospects, and Challenges
  2. Zhao Yu, Shen Guanghai, Zhu Lingli, Ding Yahong et al. (2025-11)
    Multi-Scale Analysis of 3D Printable High-Strength Engineered Cementitious Composite with Carbon and Polyethylene Fibers:
    Rheology, Printability and Hydration Kinetics in Structural Components
  3. Chen Wenguang, Yu Jie, Ye Junhong, Yu Jiangtao et al. (2025-11)
    3D Printed High-Performance Fiber-Reinforced Cementitious Composites:
    Fresh, Mechanical, and Microstructural Properties
  4. Janani Parthiban, Ganesh G. (2025-11)
    Synergistic Effects of Polypropylene Fibers on the Strength and Durability Properties of 3D Printed Concrete
  5. Ding Tao, Zhu Ruitao, Yu Kequan, Xiao Jianzhuang (2025-10)
    Direct Tensile Behavior of Three-Dimensional-Printable Steel Fiber-Reinforced Ultrahigh Performance Concrete
  6. Elhag Ahmed, Mabrouk Abdelkader, Ghazouani Nejib, Nasir Umara (2025-09)
    Advances in Sustainable 3D-Printed Geopolymer Concrete:
    Materials, Performance, and Environmental Impact in Next Generation Green Construction
  7. Liu Ruiying, Xiong Zhongming, Chen Xuan, Jia Qiong et al. (2025-09)
    Industrial Waste in 3D Printed Concrete:
    A Mechanistic Review on Rheological Control and Printability
  8. Liu Shan, Hao Yifei (2025-07)
    Designing Sprayable EGC from Constructability to Mechanical Performance
  9. Gerges Isabelle, Farraj Faten, Youssef Nicolas, Antczak Emmanuel et al. (2025-07)
    Methodologies to Design Optimum 3D Printable Mortar Mix:
    A Review
  10. Lu Chenyu, Sun Dongpu, Shen Qiang, Zhang Zhigang et al. (2025-07)
    Buildability of 3D Printing Engineered Cementitious Composites (ECC):
    A Comprehensive Assessment Framework Under Laboratory Conditions
  11. Zafar Tayyab, Zafar Muhammad, Hojati Maryam (2025-07)
    Exploring the 3D Printability of Engineered Cementitious Composites with Internal Curing for Resilient Construction in Arid Regions
  12. Sakhare Vishakha, Khairnar Neha, Dahatonde Ulka, Mashalkar Shilpa (2025-06)
    Review on Sustainability in 3D Concrete Printing:
    Focus on Waste Utilization and Life Cycle Assessment
  13. Gomez Jaramillo Laura, Luković Mladena, Šavija Branko, Zhou Wen (2025-06)
    Recycled Sand for 3D-Printed Strain Hardening Cementitious Composite:
    A Review of Recent Developments
  14. Sonebi Mohammed, Kaushik Sandipan, Amziane Sofiane, Hamill Gerard (2025-06)
    Optimization of Rheological and Hardened Properties of 3D Concrete Printing
  15. Mishra Sanjeet, Snehal K., Das B., Chandrasekaran Rajasekaran et al. (2025-05)
    From Printing to Performance:
    A Review on 3D Concrete Printing Processes, Materials, and Life Cycle Assessment
  16. Thajeel Marwah, Kopecskó Katalin, Balázs György (2025-04)
    Enhancing Printability of 3D Printed Concrete by Using Metakaolin and Silica Fume
  17. Huang Jianxiang, Wang Caifeng, Jian Shouwei, Tan Hongbo et al. (2025-04)
    Feasibility of Applying Attapulgite, Sodium Bentonite and Nano-Silica as a Viscosity Modifier Admixture for 3D Printing of Gypsum-Based Materials
  18. Cao Xiangpeng, Cui Hongzhi (2025-04)
    Simple Floor Nail Placement Technique to Reinforce 3D-Printed Concrete:
    An Experimental Investigation
  19. Wang Yang, Qiu Liu-Chao, Chen Song-Gui, Liu Yi (2025-04)
    Novel Strategy for Enhancing Rheological Properties and Interlayer Bonding in Underwater 3D Concrete Printing
  20. Chai Hwa, Shiotani Tomoki (2025-03)
    Opening Letter of RILEM TC QPA:
    Quality and Performance Assurance of Additively Manufactured Cementitious Composites by Advanced Non-Invasive Techniques
  21. Bakhshi Amir, Zafar Muhammad, Hojati Maryam (2025-02)
    A Study on Achieving High Tensile Ductility in 3D-Printable Engineered Cementitious Composites Reinforced with 8mm Fibers
  22. Gurunandan M., Nedunuri Aparna, Tanwar Jayant, Nanthagopalan Prakash et al. (2025-02)
    Development of 3D-Printable Alkali-Activated GGBFS and Fly-Ash-Binder-Based Mortars with Concrete-Demolition-Waste as Aggregates
  23. Zhang Yu, Yu Zhengxing, Zhang Yunsheng, Zhang Jiufu et al. (2024-12)
    Study on the Predictive Model for Continuous Build-Height of 3D Printed Concrete Based on Printability and Early Mechanical Properties
  24. Khan Mirza, Ahmed Aayzaz, Ali Tariq, Qureshi Muhammad et al. (2024-12)
    Comprehensive Review of 3D Printed Concrete, Life Cycle Assessment, AI and ML Models:
    Materials, Engineered Properties and Techniques for Additive Manufacturing
  25. Silvestro Laura, Ribeiro Rodrigo, Navarrete Iván (2024-12)
    Advancements in Low Carbon-Emission Cements for 3D Printing:
    A State-of-the-Art Review
  26. Forcael Eric, Medina Moisés, Opazo-Vega Alexander, Moreno Francisco et al. (2024-11)
    Additive Manufacturing in the Construction Industry
  27. Dams Barrie, Chen Binling, Kaya Yusuf, Shepherd Paul et al. (2024-11)
    The Rise of Aerial Additive Manufacturing in Construction:
    A Review of Material Advancements
  28. Warsi Syed, Panda Biranchi, Biswas Pankaj (2024-11)
    Development of Ultra-Ductile Strain-Hardening 3D Printed Concrete Composite Utilizing Critical Fiber Volume and Coarse Aggregate
  29. Fasihi Ali, Libre Nicolas (2024-10)
    Interaction Between Material and Process-Parameters During 3D Concrete-Extrusion-Process
  30. Chen Yuning, Xia Kailun, Dong Enlai, Cao Ruilin et al. (2024-10)
    A Mechanical Characteristic Capture-Method Considering Printing-Configurations for Buildability-Modeling in Concrete 3D Printing
  31. Gao Jianhao, Wang Chaofeng, Li Jiaqi, Chu S. (2024-09)
    Data-Driven Rheological-Model for 3D Printable Concrete
  32. Thajeel Marwah, György L. (2024-08)
    Hardened Properties of 3D Printed Concrete Influenced by Anisotropy
  33. Zhao Hongyu, Wang Yufei, Liu Xianda, Wang Xiangyu et al. (2024-08)
    Review on Solid Wastes Incorporated Cementitious Material Using 3D Concrete Printing-Technology
  34. Aghaee Kamran, Li Linfei, Roshan Alireza, Namakiaraghi Parsa (2024-08)
    Additive Manufacturing Evolution in Construction:
    From Individual Terrestrial to Collective, Aerial, and Extraterrestrial Applications
  35. Sovetova Meruyert, Calautit John (2024-07)
    Design, Calibration and Performance Evaluation of a Small-Scale 3D Printer for Accelerating Research in Additive Manufacturing in Construction
  36. Asghari Y., Mohammadyan-Yasouj S., Petrů M., Ghandvar H. et al. (2024-07)
    3D Printing and Implementation of Engineered Cementitious Composites:
    A Review
  37. Wang Yuting, Chen Meng, Zhang Tong, Zhang Mingzhong (2024-07)
    Hardening Properties and Microstructure of 3D Printed Engineered Cementitious Composites Based on Limestone-Calcined-Clay-Cement
  38. Shoaei Parham, Gallantree-Smith Harrison, Martínez Pacheco Victor, Pamies Ramón et al. (2024-06)
    Comparative Analysis of 3D Printing of Portland Cement Mortars with Hydroxypropyl-Methylcellulose and Micro-Fibrillated Cellulose as Viscosity-Modifying-Agents
  39. Aslani Farhad, Zhang Yifan (2024-06)
    Sustainable 3D Printed Concrete Structures Using High-Quality Secondary Raw Materials
  40. Seifan Mostafa (2024-06)
    Sustainable Three-Dimensional Printing Concrete:
    Advances, Challenges, and Future Direction
  41. González-Fonteboa Belén, Seara-Paz Sindy, Caneda-Martínez Laura (2024-06)
    3D Printing Concrete with Byproducts
  42. Mathew Ashitta, Philip Nivin, Jędrzejewska Agnieszka (2024-05)
    Enhancing Sustainability and Performance of 3D Printing Mortar with Alccofine 1203, GGBS, and Kaolin:
    Experimental Investigation and Mechanical Characterization
  43. Taqa Ala, Mohsen Mohamed, Aburumman Mervat, Naji Khalid et al. (2024-05)
    Nano-Fly-Ash and Clay for 3D Printing Concrete Buildings:
    A Fundamental Study of Rheological, Mechanical and Microstructural Properties
  44. Chen Wenguang, Ye Junhong, Jiang Fangming, Fediuk Roman et al. (2024-05)
    Printability Region for 3D Printable Engineered Cementitious Composites
  45. Luo Surong, Li Wenqiang, Wang Dehui (2024-05)
    Study on Bending Performance of 3D Printed PVA-Fiber-Reinforced Cement-Based Material
  46. Rahman Mahfuzur, Rawat Sanket, Yang Chunhui, Mahil Ahmed et al. (2024-05)
    A Comprehensive Review on Fresh and Rheological Properties of 3D Printable Cementitious Composites
  47. Khan Mehran, McNally Ciaran (2024-05)
    Recent Developments on Low-Carbon 3D Printing Concrete:
    Revolutionizing Construction Through Innovative Technology
  48. Stout Ivy, Godfrey Grant, Dayley Jenna, Rodriguez Dexter et al. (2024-05)
    Concrete Mixture Properties and Designs for Additive Manufacturing:
    A Review of 3D Concrete Printing
  49. Zhou Boyu, Zhang Mo, Ma Guowei (2024-05)
    An Experimental Study on 3D Printed Concrete Reinforced with Fibers Recycled from Wind Turbine Blades
  50. Zaid Osama, Ouni Mohamed (2024-04)
    Advancements in 3D Printing of Cementitious Materials:
    A Review of Mineral Additives, Properties, and Systematic Developments
  51. Yang Liuhua, Gao Yang, Chen Hui, Jiao Huazhe et al. (2024-04)
    3D Printing Concrete Technology from a Rheology Perspective:
    A Review
  52. Dvorkin Leonid, Marchuk Vitaliy, Mróz Katarzyna, Maroszek Marcin et al. (2024-04)
    Energy-Efficient Mixtures Suitable for 3D Technologies
  53. Mechtcherine Viktor, Kuhn Alexander, Mai (née Dressler) Inka, Nerella Venkatesh et al. (2024-03)
    Additive Manufacturing with Concrete:
    Guidelines for Planning and Implementing Projects
  54. Nefs Karsten, Kroon Kim, Sloots Joes, Bos Freek et al. (2024-03)
    Orientation-Dependency of 3D Printed SHCC at Increasing Length Scale
  55. Colyn Markus, Zijl Gideon, Babafemi Adewumi (2024-02)
    Fresh and Strength Properties of 3D Printable Concrete Mixtures Utilising a High Volume of Sustainable Alternative Binders
  56. Zhou Longfei, Gou Mifeng, Ji Jiankai, Hou Xinran et al. (2024-02)
    Durability and Hardened Properties of 3D Printed Concrete Containing Bauxite-Tailings
  57. Zhou Wen, Zhu He, Hu Wei-Hsiu, Wollaston Ryan et al. (2024-02)
    Low-Carbon, Expansive Engineered Cementitious Composites (ECC) In the Context of 3D Printing
  58. Fasihi Ali, Libre Nicolas (2024-01)
    From Pumping to Deposition:
    A Comprehensive Review of Test-Methods for Characterizing Concrete-Printability
  59. Chen Kailun, Liu Qiong, Chen Bing, Zhang Shishun et al. (2024-01)
    A Review on Effect of Raw Materials on the Performance of 3D Printed Geopolymer System for Construction
  60. Warsi Syed, Panda Biranchi, Biswas Pankaj (2023-12)
    Exploring Fiber Addition Methods and Mechanical Properties of Fiber-Reinforced 3D Printed Concrete:
    A Review
  61. Zhao Zengfeng, Ji Chenyuan, Xiao Jianzhuang, Yao Lei et al. (2023-11)
    A Critical Review on Reducing the Environmental Impact of 3D Printing Concrete:
    Material-Preparation, Construction-Process and Structure-Level
  62. Zou Mengtong, Liu Chuanbei, Zhang Keying, Li Wuqian et al. (2023-11)
    Evaluation and Control of Printability and Rheological Properties of 3D Printed Rubberized Concrete
  63. Zhou Yi, Althoey Fadi, Alotaibi Badr, Gamil Yaser et al. (2023-10)
    An Overview of Recent Advancements in Fiber-Reinforced 3D Printing Concrete
  64. Zafar Muhammad, Bakhshi Amir, Hojati Maryam (2023-10)
    Printability and Shape Fidelity Evaluation of Self-Reinforced Engineered Cementitious Composites
  65. Sedghi Reza, Zafar Muhammad, Hojati Maryam (2023-10)
    Exploring Fresh and Hardened Properties of Sustainable 3D Printed Lightweight Cementitious Mixtures
  66. Overmeir Anne, Šavija Branko, Bos Freek, Schlangen Erik (2023-09)
    Effects of 3D Concrete Printing Phases on the Mechanical Performance of Printable Strain-Hardening Cementitious Composites
  67. Overmeir Anne, Šavija Branko, Bos Freek, Schlangen Erik (2023-08)
    3D Printable Strain-Hardening Cementitious Composites (3DP-SHCC):
    Tailoring Fresh and Hardened State Properties
  68. Mani Aravindhraj, Muthukumar S., Sathyanarayanan K. (2023-08)
    Use of Alccofine 1203 as a Sustainable Supplementary Cementitious Material for Printable Concrete
  69. Zhou Wen, McGee Wesley, Gökçe H., Li Victor (2023-08)
    A Bio-Inspired Solution to Alleviate Anisotropy of 3D Printed Engineered Cementitious Composites (3DP-ECC):
    Knitting/Tilting Filaments
  70. Tu Haidong, Wei Zhenyun, Bahrami Alireza, Kahla Nabil et al. (2023-06)
    Recent Advancements and Future Trends in 3D Printing Concrete Using Waste-Materials
  71. Cabibihan John-John, Gaballa Aya, Fadli Fodil, Irshidat Mohammad et al. (2023-06)
    A Guided Approach for Utilizing Concrete Robotic 3D Printing for the Architecture, Engineering, and Construction Industry
  72. Xu Zhuoyue, Zhang Dawang, Li Hui, Yin Le et al. (2023-06)
    Effects of Additives on the Mechanical Properties, Rheology, and Printing Properties of PCC-Based 3DPMs
  73. Antoni Antoni, Adi N., Kurniawan M., Agraputra A. et al. (2023-06)
    The Influence of Viscosity-Modifying Agent and Calcium-Carbonate on 3D Printing Mortar Characteristics
  74. Fernandez Letízia, Caldas Lucas, Mendoza Reales Oscar (2023-05)
    Environmental Evaluation of 3D Printed Concrete Walls Considering the Life Cycle Perspective in the Context of Social Housing
  75. Razzaghian Ghadikolaee Mehrdad, Cerro-Prada Elena, Pan Zhu, Korayem Asghar (2023-04)
    Nanomaterials as Promising Additives for High-Performance 3D Printed Concrete:
    A Critical Review
  76. Noaimat Yazeed, Chougan Mehdi, Kheetan Mazen, Mandhari Othman et al. (2023-04)
    3D Printing of Limestone-Calcined-Clay-Cement:
    A Review of Its Potential Implementation in the Construction-Industry
  77. Zhao Yasong, Gao Yangyunzhi, Chen Gaofeng, Li Shujun et al. (2023-04)
    Development of Low-Carbon Materials from GGBS and Clay-Brick-Powder for 3D Concrete Printing
  78. Bai Meiyan, Wu Yuching, Xiao Jianzhuang, Ding Tao et al. (2023-04)
    Workability and Hardened Properties of 3D Printed Engineered Cementitious Composites Incorporating Recycled Sand and PE-Fibers
  79. Panda Biranchi, Tran Jonathan (2023-03)
    Material-Design, Additive Manufacturing, and Performance of Cement-Based Materials
  80. Kaushik Sandipan, Sonebi Mohammed, Amato Giuseppina, Das Utpal et al. (2023-02)
    Optimization of Mix Proportion of 3D Printable Mortar Based on Rheological Properties and Material-Strength Using Factorial Design of Experiment
  81. Ahmed Ghafur (2023-01)
    A Review of 3D Concrete Printing:
    Materials and Process Characterization, Economic Considerations and Environmental Sustainability
  82. Zhang Nan, Sanjayan Jay (2023-01)
    Extrusion Nozzle Design and Print Parameter Selections for 3D Concrete Printing
  83. Zhu Lingli, Yao Jie, Zhao Yu, Ruan Wenqiang et al. (2022-12)
    Effects of Composite Cementation System on Rheological and Working Performances of Fresh 3D Printable Engineered Cementitious Composites
  84. Noaimat Yazeed, Ghaffar Seyed, Chougan Mehdi, Kheetan Mazen (2022-12)
    A Review of 3D Printing Low-Carbon Concrete with One-Part Geopolymer:
    Engineering, Environmental and Economic Feasibility
  85. Uddin Md (2022-12)
    Influence of 3D Printable Sustainable Concrete and Industrial Waste on Industry 5.0
  86. Nefs Karsten, Menkovski Vlado, Bos Freek, Suiker Akke et al. (2022-12)
    Automated Image Segmentation of 3D Printed Fibrous Composite Micro-Structures Using a Neural Network
  87. Volpe Stelladriana, Sangiorgio Valentino, Fiorito Francesco, Varum Humberto (2022-12)
    Overview of 3D Construction Printing and Future Perspectives:
    A Review of Technology, Companies and Research Progression
  88. Yue J., Beskos Dimitrios, Feng C., Wu Kai (2022-11)
    Hardened Fracture Characteristics of Printed Concrete Using Acoustic Emission Monitoring Technique
  89. Bong Shin, Nematollahi Behzad, Nerella Venkatesh, Mechtcherine Viktor (2022-09)
    Method of Formulating 3D Printable Strain-Hardening Alkali-Activated Composites for Additive Construction
  90. Mortada Youssef, Mohammad Malek, Mansoor Bilal, Grasley Zachary et al. (2022-09)
    Development of Test-Methods to Evaluate the Printability of Concrete Materials for Additive Manufacturing
  91. Boddepalli Uday, Panda Biranchi, Gandhi Indu (2022-09)
    Rheology and Printability of Portland-Cement-Based Materials:
    A Review
  92. Zafar Muhammad, Bakhshi Amir, Hojati Maryam (2022-09)
    Toward 3D Printable Engineered Cementitious Composites:
    Mix-Design Proportioning, Flowability, and Mechanical Performance
  93. Duan Zhenhua, Li Lei, Yao Qinye, Zou Shuai et al. (2022-08)
    Effect of Metakaolin on the Fresh and Hardened Properties of 3D Printed Cementitious Composite
  94. Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2022-08)
    Rheometry for Concrete 3D Printing:
    A Review and an Experimental Comparison
  95. Zhou Wen, McGee Wesley, Zhu He, Gökçe H. et al. (2022-08)
    Time-Dependent Fresh Properties Characterization of 3D Printing Engineered Cementitious Composites:
    On the Evaluation of Buildability
  96. Zhu Binrong, Pan Jinlong, Li Junrui, Wang Penghui et al. (2022-07)
    Relationship Between Microstructure and Strain-Hardening Behavior of 3D Printed Engineered Cementitious Composites
  97. Ahmed Ghafur, Askandar Nasih, Jumaa Ghazi (2022-07)
    A Review of Large-Scale 3DCP:
    Material-Characteristics, Mix-Design, Printing-Process, and Reinforcement-Strategies
  98. Kamakshi Tippabhotla, Subramaniam Kolluru (2022-06)
    Developing Printable Fly-Ash-Slag Geopolymer Binders with Rheology Modification
  99. Nefs Karsten, Overmeir Anne, Salet Theo, Suiker Akke et al. (2022-06)
    Consistency of Mechanical Properties of 3D Printed Strain-Hardening Cementitious Composites Within One Printing System
  100. Rusike Rutendo, Sataya Michael, Marsh Alastair, Cavalaro Sergio et al. (2022-06)
    Accelerating Early-Age Properties of Ultra-Low Clinker Cements for Extrusion-Based 3D Printing
  101. Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-06)
    Hardened Properties of 3D Printed Concrete with Recycled Coarse Aggregate
  102. Danish Aamar, Khurshid Kiran, Mosaberpanah Mohammad, Ozbakkaloglu Togay et al. (2022-06)
    Micro-Structural Characterization, Driving Mechanisms, and Improvement-Strategies for Inter-Layer Bond Strength of Additive Manufactured Cementitious Composites:
    A Review
  103. Xu Nuoyan, Qian Ye, Yu Jing, Leung Christopher (2022-05)
    Tensile Performance of 3D Printed Strain-Hardening Cementitious Composites Considering Material-Parameters, Nozzle-Size and Printing-Pattern
  104. Saruhan Vedat, Keskinateş Muhammer, Felekoğlu Kamile, Felekoğlu Burak (2022-05)
    Effect of Fiber-Reinforcement on Extrudability and Buildability of Mineral-Additive-Modified Portland-Cement Mortars:
    A Rheometer-Based Simulation-Analysis
  105. Xu Zhuoyue, Zhang Dawang, Li Hui, Sun Xuemei et al. (2022-05)
    Effect of FA and GGBFS on Compressive Strength, Rheology, and Printing Properties of Cement-Based 3D Printing Material
  106. Saruhan Vedat, Keskinateş Muhammer, Felekoğlu Burak (2022-04)
    A Comprehensive Review on Fresh State Rheological Properties of Extrusion-Mortars Designed for 3D Printing Applications
  107. Moeini Mohammad, Hosseinpoor Masoud, Yahia Ammar (2022-04)
    3D Printing of Cement-Based Materials with Adapted Buildability
  108. Cao Xiangpeng, Yu Shiheng, Cui Hongzhi, Li Zongjin (2022-04)
    3D Printing Devices and Reinforcing Techniques for Extruded Cement-Based Materials:
    A Review
  109. Nodehi Mehrab, Ozbakkaloglu Togay, Gholampour Aliakbar (2022-04)
    Effect of Supplementary Cementitious Materials on Properties of 3D Printed Conventional and Alkali-Activated Concrete:
    A Review
  110. Bong Shin, Nematollahi Behzad, Xia Ming, Ghaffar Seyed et al. (2022-04)
    Properties of Additively Manufactured Geopolymer Incorporating Mineral-Wollastonite-Micro-Fibers
  111. Tay Yi, Lim Jian, Li Mingyang, Tan Ming (2022-03)
    Creating Functionally Graded Concrete Materials with Varying 3D Printing Parameters
  112. Filho Fernando, Chen Yu, Çopuroğlu Oğuzhan (2022-03)
    Nano-Modification in Digital Manufacturing of Cementitious Composites
  113. Ivaniuk Egor, Ivanova Irina, Sokolov Dmitrii, Tošić Zlata et al. (2022-02)
    Application-Driven Material-Design of Printable Strain-Hardening Cementitious Composites
  114. Cao Xiangpeng, Yu Shiheng, Cui Hongzhi (2022-02)
    Experimental Investigation on Inner- and Inter-Strip Reinforcements for 3D Printed Concrete via Automatic Staple Inserting Technique
  115. Liu Junli, Nguyen Vuong, Panda Biranchi, Fox Kate et al. (2022-02)
    Additive Manufacturing of Sustainable Construction Materials and Form-Finding Structures:
    A Review on Recent Progresses
  116. Overmeir Anne, Figueiredo Stefan, Šavija Branko, Bos Freek et al. (2022-02)
    Design and Analyses of Printable Strain-Hardening Cementitious Composites with Optimized Particle-Size-Distribution
  117. Dey Dhrutiman, Srinivas Dodda, Panda Biranchi, Suraneni Prannoy et al. (2022-02)
    Use of Industrial Waste-Materials for 3D Printing of Sustainable Concrete:
    A Review
  118. Asprone Domenico, Menna Costantino, Bos Freek, Mata-Falcón Jaime et al. (2022-01)
    Structural Design and Testing of Digitally Manufactured Concrete Structures
  119. Mechtcherine Viktor, Fataei Shirin, Bos Freek, Buswell Richard et al. (2022-01)
    Digital Fabrication with Cement-Based Materials:
    Underlying Physics
  120. Amran Mugahed, Abdelgader Hakim, Onaizi Ali, Fediuk Roman et al. (2021-12)
    3D Printable Alkali-Activated Concretes for Building Applications:
    A Critical Review
  121. Chen Yu, He Shan, Gan Yidong, Çopuroğlu Oğuzhan et al. (2021-11)
    A Review of Printing-Strategies, Sustainable Cementitious Materials and Characterization Methods in the Context of Extrusion-Based 3D Concrete Printing
  122. Zhu He, Yu Kequan, McGee Wesley, Ng Tsz et al. (2021-11)
    Limestone-Calcined-Clay-Cement for Three-Dimensional Printed Engineered Cementitious Composites
  123. Yang Yekai, Wu Chengqing, Liu Zhongxian, Wang Hailiang et al. (2021-10)
    Mechanical Anisotropy of Ultra-High-Performance Fiber-Reinforced Concrete for 3D Printing
  124. Hou Shaodan, Xiao Jianzhuang, Duan Zhenhua, Ma Guowei (2021-10)
    Fresh Properties of 3D Printed Mortar with Recycled Powder
  125. Liu Chenkang, Yue Songlin, Zhou Cong, Sun Honglei et al. (2021-08)
    Anisotropic Mechanical Properties of Extrusion-Based 3D Printed Layered Concrete
  126. Putten Jolien, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2021-08)
    Development of 3D Printable Cementitious Composites with the Incorporation of Polypropylene Fibers
  127. Chen Yu, He Shan, Zhang Yu, Wan Zhi et al. (2021-08)
    3D Printing of Calcined-Clay-Limestone-Based Cementitious Materials
  128. Wu Yiwen, Liu Chao, Liu Huawei, Zhang Zhenzi et al. (2021-07)
    Study on the Rheology and Buildability of 3D Printed Concrete with Recycled Coarse Aggregates
  129. Geetha S., Selvakumar M., Lakshmi S. (2021-07)
    3D Concrete Printing Matrix Reinforced with Geogrid
  130. Rehman Atta, Kim Jung-Hoon (2021-07)
    3D Concrete Printing:
    A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics
  131. Bakhshi Amir, Sedghi Reza, Hojati Maryam (2021-06)
    A Preliminary Study on the Mix-Design of 3D Printable Engineered Cementitious Composite
  132. Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
    Large-Scale 3D Printing Concrete Technology:
    Current Status and Future Opportunities
  133. Song Hongwei, Li Xinle (2021-05)
    An Overview on the Rheology, Mechanical Properties, Durability, 3D Printing, and Microstructural Performance of Nanomaterials in Cementitious Composites
  134. Benamara Abdeslam, Pierre Alexandre, Kaci Abdelhak, Mélinge Yannick (2021-05)
    Digital Printing of Mortar in Carrier-Liquid:
    Comparison of Approaches to Predict Print Stability
  135. Şahin Oğuzhan, İlcan Hüseyin, Ateşli Anıl, Kul Anil et al. (2021-05)
    Construction and Demolition Waste-Based Geopolymers Suited for Use in 3D Additive Manufacturing
  136. Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2021-05)
    Extrusion Rheometer for 3D Concrete Printing
  137. Tarhan Yeşim, Şahin Remzi (2021-05)
    Fresh and Rheological Performances of Air-Entrained 3D Printable Mortars
  138. Bos Freek, Kruger Jacques, Lucas Sandra, Zijl Gideon (2021-04)
    Juxtaposing Fresh Material-Characterisation-Methods for Buildability-Assessment of 3D Printable Cementitious Mortars
  139. Zhu Binrong, Pan Jinlong, Zhou Zhenxin, Cai Jingming (2021-04)
    Mechanical Properties of Engineered Cementitious Composites Beams Fabricated by Extrusion-Based 3D
  140. Sikora Paweł, Chougan Mehdi, Cuevas Villalobos Karla, Liebscher Marco et al. (2021-02)
    The Effects of Nano- and Micro-Sized Additives on 3D Printable Cementitious and Alkali-Activated Composites:
    A Review
  141. Yu Kequan, McGee Wesley, Ng Tsz, Zhu He et al. (2021-02)
    3D Printable Engineered Cementitious Composites:
    Fresh and Hardened Properties
  142. Demont Léo, Ducoulombier Nicolas, Mesnil Romain, Caron Jean-François (2021-01)
    Flow-Based Pultrusion of Continuous Fibers for Cement-Based Composite Material and Additive Manufacturing:
    Rheological and Technological Requirements
  143. Daungwilailuk Totsawat, Pheinsusom Phoonsak, Pansuk Withit (2021-01)
    Uniaxial Load Testing of Large-Scale 3D Printed Concrete Wall and Finite-Element-Model-Analysis
  144. Plessis Anton, Babafemi Adewumi, Paul Suvash, Panda Biranchi et al. (2020-12)
    Biomimicry for 3D Concrete Printing:
    A Review and Perspective
  145. Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
    A Review of 3D Printed Concrete:
    Performance-Requirements, Testing Measurements and Mix-Design
  146. Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
    Extrusion-Based Concrete 3D Printing from a Material Perspective:
    A State of the Art Review
  147. Mohan Manu, Rahul Attupurathu, Tittelboom Kim, Schutter Geert (2020-10)
    Rheological and Pumping Behavior of 3D Printable Cementitious Materials with Varying Aggregate Content
  148. Kruger Jacques, Zijl Gideon (2020-10)
    A Compendious Review on Lack-of-Fusion in Digital Concrete Fabrication
  149. Ding Tao, Xiao Jianzhuang, Zou Shuai, Zhou Xinji (2020-08)
    Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers
  150. Benamara Abdeslam, Pierre Alexandre, Kaci Abdelhak, Mélinge Yannick (2020-07)
    3D Printing of a Cement-Based Mortar in a Complex Fluid Suspension:
    Analytical Modeling and Experimental Tests
  151. Figueiredo Stefan, Overmeir Anne, Nefs Karsten, Schlangen Erik et al. (2020-07)
    Quality-Assessment of Printable Strain-Hardening Cementitious Composites Manufactured in Two Different Printing Facilities
  152. Hass Lauri, Bos Freek (2020-07)
    Bending and Pull-Out Tests on a Novel Screw Type Reinforcement for Extrusion-Based 3D Printed Concrete
  153. Mohan Manu, Rahul Attupurathu, Tittelboom Kim, Schutter Geert (2020-07)
    Evaluating the Influence of Aggregate Content on Pumpability of 3D Printable Concrete
  154. Chen Yu, Rodríguez Claudia, Li Zhenming, Chen Boyu et al. (2020-07)
    Effect of Different Grade Levels of Calcined Clays on Fresh and Hardened Properties of Ternary-Blended Cementitious Materials for 3D Printing
  155. Rashid Ans, Khan Shoukat, Ghamdi Sami, Koç Muammer (2020-06)
    Additive Manufacturing:
    Technology, Applications, Markets, and Opportunities for the Built Environment
  156. Buswell Richard, Silva Wilson, Bos Freek, Schipper Roel et al. (2020-05)
    A Process Classification Framework for Defining and Describing Digital Fabrication with Concrete
  157. Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2020-05)
    Mechanical Behavior of Printed Strain-Hardening Cementitious Composites
  158. Li Victor, Bos Freek, Yu Kequan, McGee Wesley et al. (2020-04)
    On the Emergence of 3D Printable Engineered, Strain-Hardening Cementitious Composites
  159. Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
    Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture
  160. Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
    Extrusion-Based Additive Manufacturing with Cement-Based Materials:
    Production Steps, Processes, and Their Underlying Physics
  161. Rahul Attupurathu, Santhanam Manu (2020-02)
    Evaluating the Printability of Concretes Containing Lightweight Coarse Aggregates
  162. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2020-01)
    Investigation of the Properties of Alkali-Activated Slag Mixes Involving the Use of Nano-Clay and Nucleation-Seeds for 3D Printing
  163. Kosson Michael, Brown Lesa, Sanchez Florence (2020-01)
    Early-Age Performance of 3D Printed Carbon-Nano-Fiber and Carbon Micro-Fiber Cement Composites
  164. Lafhaj Zoubeir, Rabenantoandro Andry, Moussaoui Soufiane, Dakhli Zakaria et al. (2019-12)
    Experimental Approach for Printability-Assessment:
    Toward a Practical Decision-Making Framework of Printability for Cementitious Materials
  165. Paolini Alexander, Kollmannsberger Stefan, Rank Ernst (2019-10)
    Additive Manufacturing in Construction:
    A Review on Processes, Applications, and Digital Planning Methods
  166. Panda Biranchi, Unluer Cise, Tan Ming (2019-08)
    Extrusion and Rheology Characterization of Geopolymer Nanocomposites Used in 3D Printing
  167. Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
    Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction
  168. Panda Biranchi, Mohamed Nisar, Paul Suvash, Bhagath Singh Gangapatnam et al. (2019-07)
    The Effect of Material Fresh Properties and Process Parameters on Buildability and Inter-Layer Adhesion of 3D Printed Concrete
  169. Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
    Digital Concrete:
    A Review
  170. Tay Yi, Qian Ye, Tan Ming (2019-05)
    Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test
  171. Chen Yu, Li Zhenming, Figueiredo Stefan, Çopuroğlu Oğuzhan et al. (2019-04)
    Limestone and Calcined-Clay-Based Sustainable Cementitious Materials for 3D Concrete Printing:
    A Fundamental Study of Extrudability and Early-Age Strength Development
  172. Chen Yu, Figueiredo Stefan, Yalçınkaya Çağlar, Çopuroğlu Oğuzhan et al. (2019-04)
    The Effect of Viscosity-Modifying Admixture on the Extrudability of Limestone and Calcined-Clay-Based Cementitious Material for Extrusion-Based 3D Concrete Printing

BibTeX
@article{figu_rodr_ahme_bos.2019.AAtDPSHCC,
  author            = "Stefan Chaves Figueiredo and Claudia Romero Rodríguez and Zeeshan Yunus Ahmed and Derk H. Bos and Yading Xu and Theo A. M. Salet and Oğuzhan Çopuroğlu and Erik Schlangen and Freek Paul Bos",
  title             = "An Approach to Develop Printable Strain-Hardening Cementitious Composites",
  doi               = "10.1016/j.matdes.2019.107651",
  year              = "2019",
  journal           = "Materials & Design",
  volume            = "169",
}
Formatted Citation

S. C. Figueiredo, “An Approach to Develop Printable Strain-Hardening Cementitious Composites”, Materials & Design, vol. 169, 2019, doi: 10.1016/j.matdes.2019.107651.

Figueiredo, Stefan Chaves, Claudia Romero Rodríguez, Zeeshan Yunus Ahmed, Derk H. Bos, Yading Xu, Theo A. M. Salet, Oğuzhan Çopuroğlu, Erik Schlangen, and Freek Paul Bos. “An Approach to Develop Printable Strain-Hardening Cementitious Composites”. Materials & Design 169 (2019). https://doi.org/10.1016/j.matdes.2019.107651.