Skip to content

Factors Affecting Flowability and Rheological Behavior of 3D Printed Concrete (2026-01)

A Comprehensive Review

10.1016/j.conbuildmat.2026.145140

 Tushar Fazlul,  Hasan Mehedi,  Hasan Kamrul, Mawa Jannatul, Habib Mostaq
Journal Article - Construction and Building Materials, Vol. 508, No. 145140

Abstract

3D printed concrete (3DPC) has emerged as a transformative technology, offering significant advantages through digitization, automation, and intelligent fabrication. However, its effectiveness largely depends on fresh-state properties such as flowability for smooth extrusion and sufficient buildability to retain shape after deposition. This paper presents a comprehensive literature review and bibliometric analysis of 3DPC, utilizing VOSviewer to analyze key academic publications. The study evaluates critical material parameters, including aggregates, cement types, binder ratios, supplementary cementitious materials (SCMs), fiber types and dosages, chemical admixtures, temperature, and waste materials, which influence fresh-state characteristics such as rheological properties, flowability, and printing properties. Additionally, the paper addresses mechanical, durability, and key printing properties, along with cost and market predictions, future challenges, and research directions. The findings indicate that the flowability of SCMs, superplasticizers (SPs), viscosity-modifying agents (VMAs), and fibers strongly correlates with both static and dynamic yield stress, where higher static yield stress enhances layer stability during printing. Incorporating nanomaterials, fibers, and chemical admixtures further improves mechanical performance. Durability is also significantly influenced by the types and combinations of additives used, with air-entraining agents (AEAs) and SCMs improving freeze-thaw resistance, while blends of Metakaolin (MK), silica fume (SF), and fibers effectively manage carbonation and chloride penetration. Additionally, to ensure stable extrusion and adequate interlayer bonding, it is recommended to maintain a D/dmax greater than 3.3. This review provides insights into material selection, mix design optimization, and process control, providing valuable insights for researchers and practitioners in the field of 3DPC industry.

178 References

  1. Adaloudis Max, Bonnin Roca Jaime (2021-05)
    Sustainability Tradeoffs in the Adoption of 3D Concrete Printing in the Construction Industry
  2. Ambily Parukutty, Kaliyavaradhan Senthil, Rajendran Neeraja (2023-05)
    Top Challenges to Widespread 3D Concrete Printing Adoption:
    A Review
  3. Ambily Parukutty, Kaliyavaradhan Senthil, Sebastian Shilpa, Shekar Deepadharshan (2023-12)
    Mixing Approach for 3D Printable Concrete:
    Method of Addition and Optimization of Superplasticizer Dosage
  4. An Dong, Zhang Yixia, Yang Chunhui (2024-05)
    Incorporating Coarse Aggregates into 3D Concrete Printing from Mixture Design and Process-Control to Structural Behavior and Practical Applications:
    A Review
  5. Antoni Antoni, Adi N., Kurniawan M., Agraputra A. et al. (2023-06)
    The Influence of Viscosity-Modifying Agent and Calcium-Carbonate on 3D Printing Mortar Characteristics
  6. Anton Ana-Maria, Reiter Lex, Wangler Timothy, Frangez Valens et al. (2020-12)
    A 3D Concrete Printing Prefabrication Platform for Bespoke Columns
  7. Bai Gang, Wang Li, Ma Guowei, Sanjayan Jay et al. (2021-03)
    3D Printing Eco-Friendly Concrete Containing Under-Utilised and Waste Solids as Aggregates
  8. Batikha Mustafa, Jotangia Rahul, Baaj Mohamad, Mousleh Ibrahim (2021-12)
    3D Concrete Printing for Sustainable and Economical Construction:
    A Comparative Study
  9. Bekaert Michiel, Tittelboom Kim, Schutter Geert (2023-10)
    The Effect of Curing Conditions on the Service Life of 3D Printed Concrete Formwork
  10. Bessaies-Bey Hela, Baumann Robert, Schmitz Marc, Radler Michael et al. (2015-05)
    Effect of Polyacrylamide on Rheology of Fresh Cement-Pastes
  11. Bong Shin, Nematollahi Behzad, Nazari Ali, Xia Ming et al. (2019-03)
    Method of Optimization for Ambient Temperature Cured Sustainable Geopolymers for 3D Printing Construction Applications
  12. Bong Shin, Nematollahi Behzad, Xia Ming, Ghaffar Seyed et al. (2022-04)
    Properties of Additively Manufactured Geopolymer Incorporating Mineral-Wollastonite-Micro-Fibers
  13. Bos Freek, Bosco Emanuela, Salet Theo (2018-11)
    Ductility of 3D Printed Concrete Reinforced with Short Straight Steel-Fibers
  14. Carvalho Ivo, Melo Abcael, Melo Carlos, Brito Mateus et al. (2023-12)
    Evaluation of the Effect of Rubber-Waste-Particles on the Rheological and Mechanical Properties of Cementitious Materials for 3D Printing
  15. Chen Yu, Jansen Koen, Zhang Hongzhi, Rodríguez Claudia et al. (2020-07)
    Effect of Printing-Parameters on Inter-Layer Bond Strength of 3D Printed Limestone-Calcined-Clay-Based Cementitious Materials:
    An Experimental and Numerical Study
  16. Chen Mingxu, Li Laibo, Wang Jiaao, Huang Yongbo et al. (2019-10)
    Rheological Parameters and Building Time of 3D Printing Sulphoaluminate-Cement-Paste Modified by Retarder and Diatomite
  17. Chen Mingxu, Yang Lei, Zheng Yan, Li Laibo et al. (2021-01)
    Rheological Behaviors and Structure Build-Up of 3D Printed Polypropylene- and Polyvinyl-Alcohol-Fiber-Reinforced Calcium-Sulphoaluminate-Cement Composites
  18. Chen Hao, Zhang Daobo, Chen Peng, Li Ning et al. (2023-03)
    A Review of the Extruder System Design for Large-Scale Extrusion-Based 3D Concrete Printing
  19. Chen Yidong, Zhang Yunsheng, Pang Bo, Liu Zhiyong et al. (2021-05)
    Extrusion-Based 3D Printing Concrete with Coarse Aggregate:
    Printability and Direction-Dependent Mechanical Performance
  20. Chen Yidong, Zhang Yunsheng, Zhang Yu, Pang Bo et al. (2023-08)
    Influence of Gradation on Extrusion-Based 3D Printing Concrete with Coarse Aggregate
  21. Cho Seung, Kruger Jacques, Bester Frederick, Heever Marchant et al. (2020-07)
    A Compendious Rheo-Mechanical Test for Printability-Assessment of 3D Printable Concrete
  22. Chougan Mehdi, Ghaffar Seyed, Jahanzat Mohammad, Albar Abdulrahman et al. (2020-04)
    The Influence of Nano-Additives in Strengthening Mechanical Performance of 3D Printed Multi-Binder Geopolymer Composites
  23. Chougan Mehdi, Ghaffar Seyed, Sikora Paweł, Chung Sang-Yeop et al. (2021-02)
    Investigation of Additive Incorporation on Rheological, Microstructural and Mechanical Properties of 3D Printable Alkali-Activated Materials
  24. Dai Shuo, Zhu Huajun, Zhai Munan, Wu Qisheng et al. (2021-06)
    Stability of Steel-Slag as Fine Aggregate and Its Application in 3D Printing Materials
  25. David Martin, Freund Niklas, Dröder Klaus, Lowke Dirk (2023-09)
    The Effects of Nozzle-Diameter and Length on the Resulting Strand Properties for Shotcrete 3D Printing
  26. Du Longyu, Zhou Jiehang, Lai Jianzhong, Wu Kai et al. (2023-07)
    Effect of Pore-Structure on Durability and Mechanical Performance of 3D Printed Concrete
  27. Duan Zhenhua, Li Lei, Yao Qinye, Zou Shuai et al. (2022-08)
    Effect of Metakaolin on the Fresh and Hardened Properties of 3D Printed Cementitious Composite
  28. Dvorkin Leonid, Konkol Janusz, Marchuk Vitaliy, Huts Andriy (2022-12)
    Effectiveness of Polymer Additives in Concrete for 3D Concrete Printing Using Fly-Ash
  29. Fonseca Mariana, Matos Ana (2023-03)
    3D Construction Printing Standing for Sustainability and Circularity:
    Material-Level Opportunities
  30. Garshasbi Sajad, Mousavi Seyed, Dehestani Mehdi, Nazarpour Hadi (2025-10)
    Sustainable Production of 3D Concrete Printing Using Agricultural Waste Fibers
  31. Geetha S., Selvakumar M., Lakshmi S. (2021-07)
    3D Concrete Printing Matrix Reinforced with Geogrid
  32. Girskas Giedrius, Kligys Modestas (2025-06)
    3D Concrete Printing Review:
    Equipment, Materials, Mix Design, and Properties
  33. Giwa Ilerioluwa, Kazemian Ali, Gopu Vijaya, Rupnow Tyson (2024-07)
    A Compressive Load-Bearing-Analysis of 3D Printed Circular Elements
  34. Hack Norman, Kloft Harald (2020-07)
    Shotcrete 3D Printing Technology for the Fabrication of Slender Fully Reinforced Freeform Concrete Elements with High Surface Quality:
    A Real-Scale Demonstrator
  35. Hambach Manuel, Rutzen Matthias, Volkmer Dirk (2019-02)
    Properties of 3D-Printed Fiber-Reinforced Portland Cement-Paste
  36. Han Yilong, Yang Zhihan, Ding Tao, Xiao Jianzhuang (2020-08)
    Environmental and Economic Assessment on 3D Printed Buildings with Recycled Concrete
  37. Hassan Hilal, Najjar Fady, Jassmi Hamad, Ahmed Waleed (2020-07)
    Fresh and Hardened Properties of 3D Printed Concrete Made with Dune Sand
  38. Hassan Habibelrahman, Rodriguez-Ubinas Edwin, Tamimi Adil, Trepci Esra et al. (2024-04)
    Towards Innovative and Sustainable Buildings:
    A Comprehensive Review of 3D Printing in Construction
  39. Heever Marchant, Plessis Anton, Kruger Jacques, Zijl Gideon (2022-01)
    Evaluating the Effects of Porosity on the Mechanical Properties of Extrusion-Based 3D Printed Concrete
  40. Hopkins Ben, Si Wen, Khan Mehran, McNally Ciaran (2025-06)
    Recent Advancements in Polypropylene Fiber-Reinforced 3D-Printed Concrete:
    Insights into Mix Ratios, Testing Procedures, and Material Behaviour
  41. Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
    A Review of 3D Printed Concrete:
    Performance-Requirements, Testing Measurements and Mix-Design
  42. Hou Shaodan, Xiao Jianzhuang, Duan Zhenhua, Ma Guowei (2021-10)
    Fresh Properties of 3D Printed Mortar with Recycled Powder
  43. Jarabo Rocío, Fuente González Elena, García Calvo José, Carballosa Pedro et al. (2024-08)
    Nano-Crystalline-Cellulose to Reduce Superplasticizer-Demand in 3D Printing of Cementitious Materials
  44. Jayathilakage Roshan, Sanjayan Jay, Rajeev Pathmanathan (2020-07)
    Characterizing Extrudability for 3D Concrete Printing Using Discrete Element Simulations
  45. Kaushik Sandipan, Sonebi Mohammed, Amato Giuseppina, Perrot Arnaud et al. (2022-02)
    Influence of Nano-Clay on the Fresh and Rheological Behavior of 3D Printing Mortar
  46. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  47. Keita Emmanuel, Bessaies-Bey Hela, Zuo Wenqiang, Belin Patrick et al. (2019-06)
    Weak Bond Strength Between Successive Layers in Extrusion-Based Additive Manufacturing:
    Measurement and Physical Origin
  48. Khajavi Siavash, Tetik Müge, Mohite Ashish, Peltokorpi Antti et al. (2021-04)
    Additive Manufacturing in the Construction Industry:
    The Comparative Competitiveness of 3D Concrete Printing
  49. Khan Mohammad, Sanchez Florence, Zhou Hongyu (2020-04)
    3D Printing of Concrete:
    Beyond Horizons
  50. Kozub Barbara, Sitarz Mateusz, Gądek Szymon, Ziejewska Celina et al. (2024-11)
    Upscaling of Copper Slag-Based Geopolymer to 3D Printing Technology
  51. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    3D Concrete Printing:
    A Lower-Bound Analytical Model for Buildability-Performance-Quantification
  52. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    An Ab-Inito Approach for Thixotropy Characterisation of Nano-Particle-Infused 3D Printable Concrete
  53. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2020-04)
    A Rheology-Based Quasi-Static Shape-Retention-Model for Digitally Fabricated Concrete
  54. Li Zhanzhao, Hojati Maryam, Wu Zhengyu, Piasente Jonathon et al. (2020-07)
    Fresh and Hardened Properties of Extrusion-Based 3D Printed Cementitious Materials:
    A Review
  55. Li Long, Ji Weiyi, Xiao Jianzhuang, Xiao Jie et al. (2025-06)
    Strategy for Improving Buildability of 3D Printing Concrete Using CO2 Mixing and Chemical Admixtures
  56. Li Shuai, Khieu Hai, Black Jay, Nguyen Hung-Xuan et al. (2024-12)
    Two-Scale 3D Printed Steel-Fiber-Reinforcements-Strategy for Concrete Structures
  57. Li Haodao, Wei Jingjie, Khayat Kamal (2024-06)
    3D Printing of Fiber-Reinforced Calcined Clay-Limestone-Based Cementitious Materials:
    From Mixture Design to Printability Evaluation
  58. Lim Jian, Panda Biranchi, Pham Quang-Cuong (2018-05)
    Improving Flexural Characteristics of 3D Printed Geopolymer Composites with In-Process Steel-Cable-Reinforcement
  59. Liu Han, Laflamme Simon, Cai Bin, Lyu Ping et al. (2024-11)
    Investigation of 3D Printed Self-Sensing UHPC Composites Using Graphite and Hybrid Carbon Microfibers
  60. Liu Chao, Liu Huawei, Wu Yiwen, Wu Jian et al. (2025-02)
    Effect of X-Ray CT Characterized Pore Structure on the Freeze-Thaw Resistance of 3D Printed Concrete with Recycled Coarse Aggregate
  61. Liu Chao, Wang Xianggang, Chen Yuning, Zhang Chao et al. (2021-06)
    Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete
  62. Liu Dawei, Zhang Zhigang, Zhang Xiaoyue, Chen Zhaohui (2023-09)
    3D Printing Concrete Structures:
    State of the Art, Challenges, and Opportunities
  63. Lv Chun, Shen Hongtao, Liu Jie, Wu Dan et al. (2022-11)
    Properties of 3D Printing Fiber-Reinforced Geopolymers Based on Inter-Layer Bonding and Anisotropy
  64. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  65. Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
    Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing
  66. Malan Jean, Rooyen Algurnon, Zijl Gideon (2021-12)
    Chloride-Induced Corrosion and Carbonation in 3D Printed Concrete
  67. Malaeb Zeina, Sakka Fatima, Hamzeh Farook (2019-02)
    3D Concrete Printing:
    Machine Design, Mix Proportioning, and Mix Comparison Between Different Machine Setups
  68. Marchment Taylor, Sanjayan Jay (2020-07)
    Penetration Reinforcing Method for 3D Concrete Printing
  69. Marchment Taylor, Sanjayan Jay, Xia Ming (2019-03)
    Method of Enhancing Inter-Layer Bond Strength in Construction-Scale 3D Printing with Mortar by Effective Bond Area Amplification
  70. Marczyk Joanna, Ziejewska Celina, Korniejenko Kinga, Łach Michał et al. (2022-09)
    Properties of 3D Printed Concrete-Geopolymer Hybrids Reinforced with Aramid Roving
  71. Masoud Laith, Hammoud Ahmad, Mortada Youssef, Masad Eyad (2024-06)
    Rheological, Mechanical, and Microscopic Properties of Polypropylene-Fiber-Reinforced Geopolymer Concrete for Additive Manufacturing
  72. Matthäus Carla, Back Daniel, Weger Daniel, Kränkel Thomas et al. (2020-07)
    Effect of Cement-Type and Limestone-Powder-Content on Extrudability of Lightweight Concrete
  73. Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
    Extrusion-Based Additive Manufacturing with Cement-Based Materials:
    Production Steps, Processes, and Their Underlying Physics
  74. Mechtcherine Viktor, Nerella Venkatesh, Will Frank, Näther Mathias et al. (2019-08)
    Large-Scale Digital Concrete Construction:
    CONPrint3D Concept for On-Site, Monolithic 3D Printing
  75. Medicis Carolina, Gonzalez Sergio, Alvarado Yezid, Vacca Hermes et al. (2022-09)
    Mechanical Performance of Commercially Available Premix UHPC-Based 3D Printable Concrete
  76. Mohammad Malek, Masad Eyad, Ghamdi Sami (2020-12)
    3D Concrete Printing Sustainability:
    A Comparative Life Cycle Assessment of Four Construction Method Scenarios
  77. Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
    Extrusion-Based Concrete 3D Printing from a Material Perspective:
    A State of the Art Review
  78. Mohamed Ibrahim, Senthil Kumar (2024-05)
    3D Printed Concrete Using Portland-Pozzolana-Cement:
    Fly-Ash-Based
  79. Mortada Youssef, Hammoud Ahmad, Masoud Laith, Wyrzykowski Mateusz et al. (2025-02)
    3D Printable Ca(OH)2-Based Geopolymer Concrete with Steel Fiber Reinforcement
  80. Mortada Youssef, Mohammad Malek, Mansoor Bilal, Grasley Zachary et al. (2022-09)
    Development of Test-Methods to Evaluate the Printability of Concrete Materials for Additive Manufacturing
  81. Nematollahi Behzad, Vijay Praful, Sanjayan Jay, Nazari Ali et al. (2018-11)
    Effect of Polypropylene Fiber Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction
  82. Nematollahi Behzad, Xia Ming, Bong Shin, Sanjayan Jay (2018-09)
    Hardened Properties of 3D Printable One-Part Geopolymer for Construction Applications
  83. Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
    Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing
  84. Nodehi Mehrab, Ozbakkaloglu Togay, Gholampour Aliakbar (2022-04)
    Effect of Supplementary Cementitious Materials on Properties of 3D Printed Conventional and Alkali-Activated Concrete:
    A Review
  85. Ogura Hiroki, Nerella Venkatesh, Mechtcherine Viktor (2018-08)
    Developing and Testing of Strain-Hardening Cement-Based Composites (SHCC) in the Context of 3D Printing
  86. Özalp Fatih, Yılmaz Halit (2020-03)
    Fresh and Hardened Properties of 3D High-Strength Printing Concrete and Its Recent Applications
  87. Pan Tinghong, Jiang Yaqing, Ji Xuping (2022-03)
    Inter-Layer Bonding Investigation of 3D Printing Cementitious Materials with Fluidity-Retaining Polycarboxylate-Superplasticizer and High-Dispersion Polycarboxylate Superplasticizer
  88. Panda Biranchi, Mohamed Nisar, Paul Suvash, Bhagath Singh Gangapatnam et al. (2019-07)
    The Effect of Material Fresh Properties and Process Parameters on Buildability and Inter-Layer Adhesion of 3D Printed Concrete
  89. Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
    Additive Manufacturing of Geopolymer for Sustainable Built Environment
  90. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2018-11)
    Improving the 3D Printability of High-Volume Fly-Ash Mixtures via the Use of Nano-Attapulgite-Clay
  91. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2020-01)
    Investigation of the Properties of Alkali-Activated Slag Mixes Involving the Use of Nano-Clay and Nucleation-Seeds for 3D Printing
  92. Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
    Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing
  93. Papachristoforou Michail, Mitsopoulos Vasilios, Stefanidou Maria (2018-10)
    Evaluation of Workability Parameters in 3D Printing Concrete
  94. Paritala Spandana, Singaram Kailash, Bathina Indira, Khan Mohd et al. (2023-08)
    Rheology and Pumpability of Mix Suitable for Extrusion-Based Concrete 3D Printing:
    A Review
  95. Prasittisopin Lapyote, Pongpaisanseree Kittisak, Jiramarootapong Patiphat, Snguanyat Chalermwut (2020-07)
    Thermal- and Sound-Insulation of Large-Scale 3D Extrusion-Printing Wall-Panel
  96. Prathipati S., Vardhan J., Murali D., Nithin C. et al. (2024-08)
    An Experimental Study on the Effect of a Viscosity-Modifying-Agent on the Rheological and Strength Behavior of 3D Printed Concrete
  97. Putten Jolien, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2021-08)
    Development of 3D Printable Cementitious Composites with the Incorporation of Polypropylene Fibers
  98. Putten Jolien, Volder Melissa, Heede Philip, Deprez Maxim et al. (2022-03)
    Transport Properties of 3D Printed Cementitious Materials with Prolonged Time-Gap Between Successive Layers
  99. Qian Ye, Kawashima Shiho (2016-09)
    Use of Creep Recovery Protocol to Measure Static Yield-Stress and Structural Rebuilding of Fresh Cement-Pastes
  100. Qian Ye, Schutter Geert (2018-06)
    Enhancing Thixotropy of Fresh Cement-Pastes with Nano-Clay in Presence of Polycarboxylate-Ether Superplasticizer (PCE)
  101. Rahul Attupurathu, Santhanam Manu (2020-02)
    Evaluating the Printability of Concretes Containing Lightweight Coarse Aggregates
  102. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
    3D Printable Concrete:
    Mixture-Design and Test-Methods
  103. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2019-08)
    Mechanical Characterization of 3D Printable Concrete
  104. Rehman Atta, Kim Jung-Hoon (2021-07)
    3D Concrete Printing:
    A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics
  105. Rehman Atta, Lee Sang-Min, Kim Jung-Hoon (2020-06)
    Use of Municipal Solid-Waste Incineration-Ash in 3D Printable Concrete
  106. Rudziewicz Magdalena, Hutyra Adam, Maroszek Marcin, Korniejenko Kinga et al. (2025-04)
    3D-Printed Lightweight Foamed Concrete with Dispersed Reinforcement
  107. Şahin Hatice, Akgümüş Fatih, Mardani Ali (2024-08)
    Mechanical and Rheological Properties of Fiber‐Reinforced 3D Printable Concrete in Terms of Fiber Content and Aspect Ratio
  108. Şahin Hatice, Mardani Ali, Beytekin Hatice (2024-02)
    Effect of Silica-Fume Utilization on Structural Build-Up, Mechanical and Dimensional Stability Performance of Fiber-Reinforced 3D Printable Concrete
  109. Şahin Hatice, Mardani Ali, Mardani Naz (2024-07)
    Performance Requirements and Optimum Mix Proportion of High-Volume Fly-Ash 3D Printable Concrete
  110. Salah Husam, Mutalib Azrul, Kaish Amrul, Syamsir Agusril et al. (2023-07)
    Development of Ultra-High-Performance Silica-Fume-Based Mortar Incorporating Graphene-Nano-Platelets for 3D Concrete Printing Application
  111. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  112. Sapata Alise, Šinka Māris, Šahmenko Genādijs, Korat Bensa Lidija et al. (2025-02)
    Establishing Benchmark Properties for 3D-Printed Concrete:
    A Study of Printability, Strength, and Durability
  113. Saruhan Vedat, Keskinateş Muhammer, Felekoğlu Burak (2022-04)
    A Comprehensive Review on Fresh State Rheological Properties of Extrusion-Mortars Designed for 3D Printing Applications
  114. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  115. Sedghi Reza, Zafar Muhammad, Hojati Maryam (2023-10)
    Exploring Fresh and Hardened Properties of Sustainable 3D Printed Lightweight Cementitious Mixtures
  116. Sergis Vasileios, Ouellet-Plamondon Claudiane (2022-07)
    Automating Mix-Design for 3D Concrete Printing Using Optimization Methods
  117. Shahib Al Bari M., Ekaputri Januarti (2024-09)
    The Effect of Fiber on the Green Strength and Buildability of High-Strength 3D Printing Concrete
  118. Shahzad Qamar, Li Fangyuan (2023-09)
    An Innovative Method for Buildability-Assessment of 3D Printed Concrete at Early-Ages
  119. Shahzad Qamar, Shen Junyi, Naseem Rabia, Yao Yonggang et al. (2021-10)
    Influence of Phase-Change-Material on Concrete Behavior for Construction 3D Printing
  120. Si Wen, Khan Mehran, McNally Ciaran (2025-06)
    A Comprehensive Review of Rheological Dynamics and Process Parameters in 3D Concrete Printing
  121. Sikora Paweł, Chougan Mehdi, Cuevas Villalobos Karla, Liebscher Marco et al. (2021-02)
    The Effects of Nano- and Micro-Sized Additives on 3D Printable Cementitious and Alkali-Activated Composites:
    A Review
  122. Singh Narinder, Colangelo Francesco, Farina Ilenia (2023-06)
    Sustainable Non-Conventional Concrete 3D Printing:
    A Review
  123. Singh Amardeep, Liu Qiong, Xiao Jianzhuang, Lyu Qifeng (2022-02)
    Mechanical and Macrostructural Properties of 3D Printed Concrete Dosed with Steel-Fibers under Different Loading-Direction
  124. Singh Amardeep, Yang Song, Wang Dianchao, Xiao Jianzhuang et al. (2025-09)
    Critical Threshold Fiber Content for Freeze-Thaw Resistance in 3D-Printed Concrete
  125. Skibicki Szymon, Federowicz Karol, Hoffmann Marcin, Chougan Mehdi et al. (2024-05)
    Potential of Reusing 3D Printed Concrete (3DPC) Fine Recycled Aggregates as a Strategy Towards Decreasing Cement Content in 3DPC
  126. Skibicki Szymon, Techman Mateusz, Federowicz Karol, Olczyk Norbert et al. (2021-12)
    Experimental Study of Hardened Young's Modulus for 3D Printed Mortar
  127. Soltan Daniel, Li Victor (2018-03)
    A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing
  128. Song Xinlei, Xu Quanbiao, Wang Hailong, Sun Xiaoyan et al. (2025-05)
    Flowability-Dependent Anisotropic Mechanical Properties of 3D Printing Concrete:
    Experimental and Theoretical Study
  129. Souza Marcelo, Ferreira Igor, Moraes Elisângela, Senff Luciano et al. (2021-11)
    Role of Chemical Admixtures on 3D Printed Portland Cement:
    Assessing Rheology and Buildability
  130. Spuriņa Ella, Šinka Māris, Ziemelis Krists, Vanags Andris et al. (2022-09)
    The Effects of Air-Entraining Agent on Fresh and Hardened Properties of 3D Concrete
  131. Sun Junbo, Zhang Yanling, Wu Qi, Wang Yufei et al. (2024-10)
    3D Printed Concrete Incorporating Waste-Rubber:
    Anisotropic Properties and Environmental Impact-Analysis
  132. Surehali Sahil, Tripathi Avinaya, Neithalath Narayanan (2023-08)
    Anisotropy in Additively Manufactured Concrete Specimens Under Compressive Loading:
    Quantification of the Effects of Layer-Height and Fiber-Reinforcement
  133. Tabassum Toiba, Ahmad Mir Ajaz (2023-08)
    A Review of 3D Printing Technology:
    The Future of Sustainable Construction
  134. Tamimi Adil, Alqamish Habib, Khaldoune Ahlam, Alhaidary Haidar et al. (2023-03)
    Framework of 3D Concrete Printing Potential and Challenges
  135. Tarhan Yeşim, Tarhan İsmail, Şahin Remzi (2024-12)
    Comprehensive Review of Binder Matrices in 3D Printing Construction:
    Rheological Perspectives
  136. Tay Yi, Qian Ye, Tan Ming (2019-05)
    Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test
  137. Tay Yi, Ting Guan, Qian Ye, Panda Biranchi et al. (2018-07)
    Time-Gap-Effect on Bond Strength of 3D Printed Concrete
  138. Teixeira João, Schaefer Cecília, Maia Lino, Rangel Bárbara et al. (2022-03)
    Influence of Supplementary Cementitious Materials on Fresh Properties of 3D Printable Materials
  139. Thajeel Marwah, Kopecskó Katalin, Balázs György (2025-04)
    Enhancing Printability of 3D Printed Concrete by Using Metakaolin and Silica Fume
  140. Ting Guan, Tay Yi, Qian Ye, Tan Ming (2019-03)
    Utilization of Recycled Glass for 3D Concrete Printing:
    Rheological and Mechanical Properties
  141. Tran Nhi, Tran Mien, Tran Jonathan, Nguyen Anh et al. (2024-09)
    Eco-Friendly 3D Printed Concrete Using Steel-Slag-Aggregate:
    Buildability, Printability and Mechanical Properties
  142. Tripathi Avinaya, Nair Sooraj, Neithalath Narayanan (2022-01)
    A Comprehensive Analysis of Buildability of 3D Printed Concrete and the Use of Bi-Linear Stress-Strain Criterion-Based Failure Curves Towards Their Prediction
  143. Tseng Kuo-Chang, Chi Maochieh, Yeih Weichung, Huang Ran (2025-04)
    Influence of Slag/Fly Ash as Partial Cement Replacement on Printability and Mechanical Properties of 3D-Printed Concrete
  144. Wang Zhibin, Jia Lutao, Deng Zhicong, Zhang Chao et al. (2022-08)
    Bond Behavior Between Steel-Bars and 3D Printed Concrete:
    Effect of Concrete Rheological Property, Steel-Bar Diameter and Paste-Coating
  145. Wang Suguo, Wang Xing, Yan Xueyuan, Chen Shanghong (2025-08)
    Effects of Aggregate Size and Nozzle Diameter on Printability and Mechanical Properties of 3D Printed Ferronickel Slag-GGBFS Concrete
  146. Wang Bolin, Yao Xiaofei, Yang Min, Zhang Runhong et al. (2022-04)
    Mechanical Performance of 3D Printed Concrete in Steam-Curing Conditions
  147. Wei Yazhi, Zhang Hui (2024-09)
    Influence of Temperature and Humidity on Mechanical Properties of Calcined-Oyster-Shell-Powder-Modified 3D Printed Concrete
  148. Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
    Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model
  149. Weng Yiwei, Lu Bing, Li Mingyang, Liu Zhixin et al. (2018-09)
    Empirical Models to Predict Rheological Properties of Fiber-Reinforced Cementitious Composites for 3D Printing
  150. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  151. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  152. Wu Yun-Chen, Li Mo (2022-09)
    Effects of Early-Age Rheology and Printing Time Interval on Late-Age Fracture Characteristics of 3D Printed Concrete
  153. Wu Peng, Wang Jun, Wang Xiangyu (2016-04)
    A Critical Review of the Use of 3D Printing in the Construction Industry
  154. Xia Zhenjiang, Geng Jian, Zhou Zhijie, Liu Genjin (2025-01)
    Comparative Analysis of Polypropylene, Basalt, and Steel Fibers in 3D Printed Concrete:
    Effects on Flowability, Printabiliy, Rheology, and Mechanical Performance
  155. Yalçınkaya Çağlar (2022-03)
    Influence of Hydroxypropyl Methylcellulose Dosage on the Mechanical Properties of 3D Printable Mortars with and without Fiber-Reinforcement
  156. Yan Yufei, Zhang Mo, Ma Guowei, Sanjayan Jay (2024-05)
    Enhancing Inter-Layer Bonding Strength of 3D Printed Ternary Geopolymer Using Calcium-Carbonate-Whiskers Spray
  157. Yang Liuhua, Gao Yang, Chen Hui, Jiao Huazhe et al. (2024-04)
    3D Printing Concrete Technology from a Rheology Perspective:
    A Review
  158. Yang Shuai, Li Fei, Lu Ya, Xu Xiaoming et al. (2025-08)
    Study of the Printing Characteristics of a 3D Printing Solution for the Purpose of Process Optimization
  159. Yang Liming, Sepasgozar Samad, Shirowzhan Sara, Kashani Alireza et al. (2022-12)
    Nozzle Criteria for Enhancing Extrudability, Buildability and Inter-Layer Bonding in 3D Printing Concrete
  160. Yang Yekai, Wu Chengqing, Liu Zhongxian, Wang Hailiang et al. (2021-10)
    Mechanical Anisotropy of Ultra-High-Performance Fiber-Reinforced Concrete for 3D Printing
  161. Yang Kun, Yuan Jingbo, Wang Yibo, Yang Fan et al. (2025-03)
    Optimization of 3D Printing Nozzle Structure and the Influence of Process Parameters on the Forming Performance of Underwater Concrete
  162. Yao Hao, Xie Zonglin, Li Zemin, Huang Chuhan et al. (2021-11)
    The Relationship Between the Rheological Behavior and Inter-Layer Bonding Properties of 3D Printing Cementitious Materials with the Addition of Attapulgite
  163. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
    Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete
  164. Zhang Chao, Deng Zhicong, Chen Chun, Zhang Yamei et al. (2022-03)
    Predicting the Static Yield-Stress of 3D Printable Concrete Based on Flowability of Paste and Thickness of Excess-Paste-Layer
  165. Zhang Chao, Hou Zeyu, Chen Chun, Zhang Yamei et al. (2019-09)
    Design of 3D Printable Concrete Based on the Relationship Between Flowability of Cement-Paste and Optimum Aggregate-Content
  166. Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
    Mix-Design Concepts for 3D Printable Concrete:
    A Review
  167. Zhang Nan, Sanjayan Jay (2023-01)
    Extrusion Nozzle Design and Print Parameter Selections for 3D Concrete Printing
  168. Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
    A Review of the Current Progress and Application of 3D Printed Concrete
  169. Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
    Fresh Properties of a Novel 3D Printing Concrete Ink
  170. Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
    Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete
  171. Zhang Yu, Zhang Yunsheng, Yang Lin, Liu Guojian et al. (2021-02)
    Hardened Properties and Durability of Large-Scale 3D Printed Cement-Based Materials
  172. Zhao Yasong, Gao Yangyunzhi, Chen Gaofeng, Li Shujun et al. (2023-04)
    Development of Low-Carbon Materials from GGBS and Clay-Brick-Powder for 3D Concrete Printing
  173. Zhou Yi, Althoey Fadi, Alotaibi Badr, Gamil Yaser et al. (2023-10)
    An Overview of Recent Advancements in Fiber-Reinforced 3D Printing Concrete
  174. Zhou Yiyi, Luo Haoran, Anand Kamal, Singh Amardeep et al. (2024-02)
    Sustainable Use of Ultrafine Recycled Glass in Additive Manufactured Reactive-Powder Concrete
  175. Zhou Wen, McGee Wesley, Zhu He, Gökçe H. et al. (2022-08)
    Time-Dependent Fresh Properties Characterization of 3D Printing Engineered Cementitious Composites:
    On the Evaluation of Buildability
  176. Zhou Wen, Zhang Yamei, Ma Lei, Li Victor (2022-04)
    Influence of Printing Parameters on 3D Printing Engineered Cementitious Composites
  177. Zhu Wenxuan, Liu Chao, Zhang Yu, Zhang Yunsheng et al. (2025-05)
    Rheological Performance Regulation and Material Optimization of Manufactured Sand Concrete in 3D Printing
  178. Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
    Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction

0 Citations

BibTeX
@article{tush_hasa_hasa_mawa.2026.FAFaRBo3PC,
  author            = "Fazlul Hoque Tushar and Mehedi Hasan and Kamrul Hasan and Jannatul Mawa and Mostaq Habib",
  title             = "Factors Affecting Flowability and Rheological Behavior of 3D Printed Concrete: A Comprehensive Review",
  doi               = "10.1016/j.conbuildmat.2026.145140",
  year              = "2026",
  journal           = "Construction and Building Materials",
  volume            = "508",
  pages             = "145140",
}
Formatted Citation

F. H. Tushar, M. Hasan, K. Hasan, J. Mawa and M. Habib, “Factors Affecting Flowability and Rheological Behavior of 3D Printed Concrete: A Comprehensive Review”, Construction and Building Materials, vol. 508, p. 145140, 2026, doi: 10.1016/j.conbuildmat.2026.145140.

Tushar, Fazlul Hoque, Mehedi Hasan, Kamrul Hasan, Jannatul Mawa, and Mostaq Habib. “Factors Affecting Flowability and Rheological Behavior of 3D Printed Concrete: A Comprehensive Review”. Construction and Building Materials 508 (2026): 145140. https://doi.org/10.1016/j.conbuildmat.2026.145140.