Skip to content

Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model (2018-01)

10.1016/j.conbuildmat.2017.12.112

 Weng Yiwei,  Li Mingyang,  Tan Ming,  Qian Shunzhi
Journal Article - Construction and Building Materials, Vol. 163, pp. 600-610

Abstract

Cementitious materials for 3D printing have special requirements for rheological properties, which are significantly affected by many factors, including sand gradation and packing fraction. Fuller Thompson theory and Marson-Percy model are classic approaches for sand gradation and packing fraction optimization, respectively. This paper attempts to apply Fuller Thompson theory and Marson-Percy model in designing cementitious materials for 3D Cementitious Materials Printing (3DCMP). Various gradation methods adopted in this study were Fuller Thompson gradation (mixture A), uniform-gradations (mixture B and C), gap-gradations (mixture D and E). Besides these mixtures with special gradation approaches, one mixture using natural river sand (mixture F) was prepared as well. Rheological properties were characterized by static/dynamic yield stress and plastic viscosity in Bingham Plastic model. Buildability was examined by printing a column with 10 cm inner diameter via a gantry printer. Rheological test results indicate that mixture A designed by continuous gradation possesses the highest static/dynamic yield stress and lowest plastic viscosity. During printing test for buildability, mixture A can easily reach up to 40 layers without notable deformation, while all other mixtures deformed noticeably and fell down before the 35th layer. Finally, a large-scale printing was carried out with mixture A and a structure with the height of 80 cm was printed successfully without notable deformation. Density, compressive strength and flexural strength of printed filaments were also characterized. Mechanical performance test results illustrate mixture A has the highest density and appropriate compressive strength, and a relative high flexural strength at different curing ages. These results indicate that Fuller Thompson theory and Marson-Percy model can serve as a reasonable guide for material rheology design for 3DCMP.

11 References

  1. Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
    Additive Manufacturing of Concrete in Construction:
    Potentials and Challenges of 3D Concrete Printing
  2. Feng Peng, Meng Xinmiao, Chen Jian-Fei, Ye Lieping (2015-06)
    Mechanical Properties of Structures 3D Printed with Cementitious Powders
  3. Gardiner James, Janssen Steven, Kirchner Nathan (2016-07)
    A Realization of a Construction-Scale Robotic System for 3D Printing of Complex Formwork
  4. Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
    Large-Scale 3D Printing of Ultra-High-Performance Concrete:
    A New Processing Route for Architects and Builders
  5. Hambach Manuel, Volkmer Dirk (2017-02)
    Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste
  6. Hwang Dooil, Khoshnevis Behrokh (2004-09)
    Concrete Wall Fabrication by Contour Crafting
  7. Khoshnevis Behrokh (2003-11)
    Automated Construction by Contour Crafting:
    Related Robotics and Information Technologies
  8. Khoshnevis Behrokh, Hwang Dooil, Yao Ke, Yeh Zhenghao (2006-05)
    Mega-Scale Fabrication by Contour Crafting
  9. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  10. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  11. Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
    Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques

232 Citations

  1. Tushar Fazlul, Hasan Mehedi, Hasan Kamrul, Mawa Jannatul et al. (2026-01)
    Factors Affecting Flowability and Rheological Behavior of 3D Printed Concrete:
    A Comprehensive Review
  2. Tong Zhongling, Guan Qingtao, Elabbasy Ahmed, Ateah Ali et al. (2025-12)
    Empowering 3D Printed Concrete:
    Discovering the Impact of Steel Fiber Reinforcement on Mechanical Performance
  3. Abbas Yassir, Alsaif Abdulaziz (2025-11)
    Explainable Data-Driven Modeling for Optimized Mix Design of 3D-Printed Concrete:
    Interpreting Nonlinear Synergies Among Binder Components and Proportions
  4. Tulliani Jean-Marc (2025-11)
    Latest Developments in 3D-Printed Engineered Cementitious Composites:
    Technologies, Prospects, and Challenges
  5. Sun Yan, Du Guoqiang, Mudasir Maryam (2025-11)
    Rheological Investigations of Fresh Fiber-Reinforced Cementitious Composites Using Hydrophobic / Hydrophilic UHMWPE Fibers for 3D Concrete Printing Evaluation
  6. Janani Parthiban, Ganesh G. (2025-11)
    Synergistic Effects of Polypropylene Fibers on the Strength and Durability Properties of 3D Printed Concrete
  7. Foulki Rida, Mesoudy Mouad, Cherkaoui Khalid (2025-10)
    Numerical and Theoretical Analysis of Pumping and Extrusion in 3D Concrete Printing
  8. Rahman Mahfuzur, An Dong, Rawat Sanket, Yang Richard et al. (2025-09)
    Development of Green 3D Printable Cementitious Composites Using Multi-Response Optimisation Method
  9. Paritala Spandana, Raj Shubham, Singh Prashant, Subramaniam Kolluru (2025-09)
    Designing 3D Printable Concrete by Integrating the Influence of Aggregate Characteristics
  10. Liu Ruiying, Xiong Zhongming, Chen Xuan, Jia Qiong et al. (2025-09)
    Industrial Waste in 3D Printed Concrete:
    A Mechanistic Review on Rheological Control and Printability
  11. Murtaza Ghulam, Baldinelli Giorgio (2025-08)
    Revolutionizing Architecture:
    3D Printing in Large Construction Industry and Strategic Innovations for Enhanced Performance
  12. Amdouni Marwen, Nasraoui Helmi, Rezgui Mohamed, Trabelsi Ali (2025-07)
    Use of the RDPP-SF Method to Analyze Rheology Variation in an AM-Cement-Based Process
  13. Zafar Muhammad, Javadnejad Farid, Hojati Maryam (2025-07)
    Optimizing Rheological Properties of 3D Printed Cementitious Materials via Ensemble Machine Learning
  14. Shi Ye, You Ge, Wu Pengtao, Liu Zhongxian et al. (2025-07)
    Effect of Water Film and Paste Film Thicknesses on Printability of 3D Printed Low Cement UHPC
  15. Cui Weijiu, Ji Dongsheng, Shen Liang, Su Shiyong et al. (2025-06)
    A Neural Network-Based Model for Assessing 3D Printable Concrete Performance in Robotic Fabrication
  16. Sakhare Vishakha, Khairnar Neha, Dahatonde Ulka, Mashalkar Shilpa (2025-06)
    Review on Sustainability in 3D Concrete Printing:
    Focus on Waste Utilization and Life Cycle Assessment
  17. Pei Qiang, Zhong Yingzhu, Wang Shuai, Zhang Luxi et al. (2025-06)
    Interlayer Bonding Shear Performance and Constitutive Model of 3DPC with Different Fine Aggregate Gradations
  18. Mohamed Osama, Mishra Anamika, Isam Fida (2025-05)
    An Overview of 3D Printed Concrete for Building Structures:
    Material Properties, Sustainability, Future Opportunities, and Challenges
  19. Nayaka Ramesh, Kumar H., Sharif Ahamed, Zhang Y. (2025-05)
    Exploring Key Aspects and Sustainable Benefits of 3D Concrete Printing (3DCP):
    A Selective Review
  20. Wang Guihua, Zhou Jiguo, Liu Haoyun, Zhang Jianming (2025-05)
    Rheological Properties and Mechanical Durability of 3D-Printed Concrete Based on Low-Field NMR
  21. Das B., Prathap Y., Sandeep Ankit, Vaghamshi Keval et al. (2025-05)
    Reviewing the Materials Selection, Rheology, Durability, and Microstructural Characteristics of 3D Printed Concrete
  22. Mishra Sanjeet, Snehal K., Das B., Chandrasekaran Rajasekaran et al. (2025-05)
    From Printing to Performance:
    A Review on 3D Concrete Printing Processes, Materials, and Life Cycle Assessment
  23. Huang Jianxiang, Wang Caifeng, Jian Shouwei, Tan Hongbo et al. (2025-04)
    Feasibility of Applying Attapulgite, Sodium Bentonite and Nano-Silica as a Viscosity Modifier Admixture for 3D Printing of Gypsum-Based Materials
  24. Maralapalle Vedprakash, Kumavat Hemraj, Nadaf Maheboobsab, Zende Aijaz et al. (2025-04)
    Optimizing 3D Geopolymer Concrete for Sustainable Construction:
    A Review of Material Selection, Printing Methods, and Properties
  25. Kurniati Eka, Kim Heejeong (2025-04)
    Enhancing the Printability of 3D Printing Limestone Calcined Clay Cement Using Hydroxyethyl Cellulose Admixture and Silica Fume
  26. Zhang Ziqi, Pan Tinghong, Guoa Rongxin, Lin Runsheng et al. (2025-04)
    Simulation and Analysis of Material Stacking and Migration Induced by Extrusion Behavior in 3D Printed Concrete
  27. Jiang Yu, Zhang Qingxin, Tabbaa Abir, Daly Ronan (2025-03)
    The Critical Role of Time-Dependent Rheology for Improved Quality Control of 3D Printed Cementitious Structures
  28. Zafar Muhammad, Shahid Adnan, Sedghi Reza, Hojati Maryam (2025-03)
    Optimization of Biopolymer Additives for 3D Printable Cementitious Systems:
    A Design of Experiment Approach
  29. Li Liqing, Shi Zhenkun, Wang Lei, Sui Yi et al. (2025-03)
    Experimental Study on Rheological Properties and 3D Printing of Simulated Lunar Soil Polymers
  30. Araújo Rísia, Martinelli Antônio, Cabral Kleber, Nunes Ueslei et al. (2025-03)
    Effect of Lightweight Expanded Clay Aggregate (LECA) On the Printability of Cementitious Compositions for 3D Printing
  31. Teng Fei, Xu Fengming, Yang Minxin, Yu Jie et al. (2025-02)
    Development of Sustainable Strain-Hardening Cementitious Composites Containing Diatomite for 3D Printing
  32. Park Ji-seul, Jeong Seung-Su, Hong Seungkee, Lee Seohyung et al. (2025-02)
    Mechanical Modeling for Prediction of Structural Stability of Cylindrical Structures During 3D Concrete Printing
  33. Wang Hailong, Shen Wenbin, Sun Xiaoyan, Song Xinlei et al. (2025-01)
    Influences of Particle-Size on the Performance of 3D Printed Coarse Aggregate Concrete:
    Experiment, Microstructure, and Mechanism Analysis
  34. Sun Junbo, Wang Yufei, Yang Xin, Wang Haihong et al. (2025-01)
    Red Mud Utilization in Fiber-Reinforced 3D Printed Concrete:
    Mechanical Properties and Environmental Impact Analysis
  35. Yu Jie, Xu Fengming, Zhang Hanghua, Ye Junhong et al. (2025-01)
    Leveraging Incinerator Bottom Ash for Mitigating Early-Age Shrinkage in 3D Printed Engineered Cementitious Composites
  36. Elango K., Saravanakumar R., Vivek D., Yuvaraj S. et al. (2025-01)
    A Critical Review of Fresh, Hardened and Durability Properties of 3D Printing Concrete
  37. Schossler Rodrigo, Ullah Shafi, Alajlan Zaid, Yu Xiong (2025-01)
    Data-Driven Analysis in 3D Concrete Printing:
    Predicting and Optimizing Construction Mixtures
  38. Abedi Mohammadmadhi, Waris Muhammad, Alawi Mubarak, Jabri Khalifa et al. (2024-12)
    From Local Earth to Modern Structures:
    A Critical Review of 3D Printed Cement Composites for Sustainable and Efficient Construction
  39. Tarhan Yeşim, Tarhan İsmail, Şahin Remzi (2024-12)
    Comprehensive Review of Binder Matrices in 3D Printing Construction:
    Rheological Perspectives
  40. Zhao Zhihui, Cai Xianhuan, Chen Fan, Gong Yongfan et al. (2024-12)
    Effect of Wollastonite-Content on Rheology and Mechanical Properties of 3D Printed Magnesium-Potassium-Phosphate-Cement-Based Material of MgO-SiO2-K2HPO4
  41. Gurunandan M., Mala Hiranya, Nanthagopalan Prakash (2024-12)
    Effect of Water-to-Binder, Aggregate-to-Binder-Ratio and Admixtures on Printability and Mechanical Properties of 3D Printable Mortar Mixtures
  42. Khan Mirza, Ahmed Aayzaz, Ali Tariq, Qureshi Muhammad et al. (2024-12)
    Comprehensive Review of 3D Printed Concrete, Life Cycle Assessment, AI and ML Models:
    Materials, Engineered Properties and Techniques for Additive Manufacturing
  43. Liu Chao, Zhang Yukun, Liu Huawei, Wu Yiwen et al. (2024-10)
    Inter-Layer Reinforced 3D Printed Concrete with Recycled Coarse Aggregate:
    Shear Properties and Enhancement Methods
  44. Negron-McFarlane Christian, Kreiger Eric, Kreiger Megan (2024-09)
    Determination of Print Speed Based on the Fresh Mechanical Strength over Time of Additively Constructed Concrete by Unconfined Compression
  45. Gao Jianhao, Wang Chaofeng, Li Jiaqi, Chu S. (2024-09)
    Data-Driven Rheological-Model for 3D Printable Concrete
  46. Soto Rubio Mauricio, Mirza Muhammad, Kagdi Mustafa, Bisati Ahmad (2024-08)
    Examining the Role of Concrete 3D Printing for Housing Construction on Indigenous Reserves in Canada
  47. Aghaee Kamran, Li Linfei, Roshan Alireza, Namakiaraghi Parsa (2024-08)
    Additive Manufacturing Evolution in Construction:
    From Individual Terrestrial to Collective, Aerial, and Extraterrestrial Applications
  48. Zhang Nan, Sanjayan Jay (2024-07)
    Pumping-Less 3D Concrete Printing Using Quick Nozzle Mixing
  49. Liu Zhenbang, Li Mingyang, Liu Zhixin, Wong Teck (2024-07)
    Effects of Vinyl-Acetate and Ethylene-Copolymer on Printing and Mechanical Performances of 3D Printing Cementitious Materials
  50. Sahana C., Soda Prabhath, Dwivedi Ashutosh, Kumar Sandeep et al. (2024-07)
    3D Printing with Stabilized Earth:
    Material-Development and Effect of Carbon-Sequestration on Engineering-Performance
  51. Asghari Y., Mohammadyan-Yasouj S., Petrů M., Ghandvar H. et al. (2024-07)
    3D Printing and Implementation of Engineered Cementitious Composites:
    A Review
  52. Teng Fei, Ye Junhong, Yu Jie, Li Heng et al. (2024-07)
    Development of Strain-Hardening Cementitious Composites (SHCC) As Bonding Materials to Enhance Inter-Layer and Flexural Performance of 3D Printed Concrete
  53. Ye Junhong, Zhuang Zicheng, Teng Fei, Yu Jie et al. (2024-07)
    Comparative Environmental-Assessment of 3D Concrete Printing with Engineered Cementitious Composites
  54. Bong Shin, Du Hongjian (2024-06)
    Sustainable Additive Manufacturing of Concrete with Low-Carbon Materials
  55. González-Fonteboa Belén, Seara-Paz Sindy, Caneda-Martínez Laura (2024-06)
    3D Printing Concrete with Byproducts
  56. Rama Krishna A., Mallik Mainak, Maity Damodar (2024-06)
    Developing an Appropriate Concrete Mix for 3D Concrete Printing
  57. Zhuang Zicheng, Xu Fengming, Ye Junhong, Hu Nan et al. (2024-06)
    A Comprehensive Review of Sustainable Materials and Tool-Path-Optimization in 3D Concrete Printing
  58. Rahman Mahfuzur, Rawat Sanket, Yang Chunhui, Mahil Ahmed et al. (2024-05)
    A Comprehensive Review on Fresh and Rheological Properties of 3D Printable Cementitious Composites
  59. Stout Ivy, Godfrey Grant, Dayley Jenna, Rodriguez Dexter et al. (2024-05)
    Concrete Mixture Properties and Designs for Additive Manufacturing:
    A Review of 3D Concrete Printing
  60. Zaid Osama, Ouni Mohamed (2024-04)
    Advancements in 3D Printing of Cementitious Materials:
    A Review of Mineral Additives, Properties, and Systematic Developments
  61. Hassan Habibelrahman, Rodriguez-Ubinas Edwin, Tamimi Adil, Trepci Esra et al. (2024-04)
    Towards Innovative and Sustainable Buildings:
    A Comprehensive Review of 3D Printing in Construction
  62. Wei Ying, Han Song, Chen Ziwei, Lu Jianxian et al. (2024-04)
    Numerical Simulation of 3D Concrete Printing Derived from Printer Head and Printing Process
  63. Soda Prabhath, Dwivedi Ashutosh, Sahana C., Gupta Souradeep (2024-03)
    Development of 3D Printable Stabilized Earth-Based Construction Materials Using Excavated Soil:
    Evaluation of Fresh and Hardened Properties
  64. Colyn Markus, Zijl Gideon, Babafemi Adewumi (2024-02)
    Fresh and Strength Properties of 3D Printable Concrete Mixtures Utilising a High Volume of Sustainable Alternative Binders
  65. Silva Guido, Quispe Axcel, Baldoceda Jordan, Kim Suyeon et al. (2024-02)
    Additive Construction of Concrete Deep Beams Using Low-Cost Characterization Methods and FEM-Based Topological Optimization
  66. Fasihi Ali, Libre Nicolas (2024-01)
    From Pumping to Deposition:
    A Comprehensive Review of Test-Methods for Characterizing Concrete-Printability
  67. Pham Thi, Trinh Duy, Do Trong, Huang Jie (2023-12)
    Flexural Behavior of Printed Concrete Wide Beams with Dispersed Fibers-Reinforced
  68. Bono Victor, Ducoulombier Nicolas, Mesnil Romain, Caron Jean-François (2023-12)
    Methodology for Formulating Low-Carbon Printable Mortar Through Particles-Packing-Optimization
  69. Panda Biranchi, Shakor Pshtiwan, Laghi Vittoria (2023-12)
    Powder-Bed Additive Manufacturing
  70. Panda Biranchi, Shakor Pshtiwan, Laghi Vittoria (2023-12)
    Shotcrete Additive Manufacturing
  71. Chen Yu, Rahmani Hossein, Schlangen Erik, Çopuroğlu Oğuzhan (2023-11)
    An Approach to Develop Set-on-Demand 3D Printable Limestone-Calcined-Clay-Based Cementitious Materials Using Calcium-Nitrate
  72. Liu Huawei, Liu Chao, Zhang Yamei, Bai Guoliang (2023-11)
    Bonding Properties Between 3D Printed Coarse Aggregate Concrete and Rebar Based on Interface Structural Characteristics
  73. Ibrahim Kamoru, Zijl Gideon, Babafemi Adewumi (2023-10)
    Comparative Studies of LC³- and Fly-Ash-Based Blended Binders in Fiber-Reinforced Printed Concrete:
    Rheological and Quasi-Static Mechanical Characteristics
  74. Oosthuizen Jandré, Babafemi Adewumi, Walls Richard (2023-10)
    3D Printed Recycled Plastic Eco-Aggregate (Resin8) Concrete
  75. Şahin Hatice, Mardani Ali (2023-10)
    How Does Rheological Behavior Affect the Inter-Layer Bonding Strength of 3DPC Mixtures?
  76. Zafar Muhammad, Bakhshi Amir, Hojati Maryam (2023-10)
    Printability and Shape Fidelity Evaluation of Self-Reinforced Engineered Cementitious Composites
  77. Liu Zhenbang, Li Mingyang, Quah Tan, Wong Teck et al. (2023-09)
    Comprehensive Investigations on the Relationship Between the 3D Concrete Printing Failure Criterion and Properties of Fresh-State Cementitious Materials
  78. Ji Xuping, Pan Tinghong, Liu Xingyao, Zhao Wenhao et al. (2023-09)
    Characterization of Thixotropic Properties of Fresh Cement‐Based Materials
  79. Polychronopoulos Nickolas, Sarris Ioannis, Benos Lefteris, Vlachopoulos John (2023-09)
    Pressure-Drop in Converging Flows in Three-Dimensional Printing of Concrete
  80. Li Mingyang, Zhang Dong, Wong Teck, Tan Ming et al. (2023-09)
    Modeling and Experimental Investigation of Fiber Orientation in Cast and 3D Printed Cementitious Composites
  81. Liu Xiaoshuang, Zou Yuxiao, Wu Yingxuan, Cui Dong et al. (2023-09)
    The Effect of U-Type Expanding Agent for Concrete (UEA) on the Microstructural and Mechanical Properties of Mortar Fabricated Through Alternate 3D Printing
  82. Ye Junhong, Teng Fei, Yu Jie, Yu Shiwei et al. (2023-08)
    Development of 3D Printable Engineered Cementitious Composites with Incineration-Bottom-Ash for Sustainable and Digital Construction
  83. Li Mingyang, Liu Zhixin, Ho Jin, Wong Teck (2023-08)
    Experimental Investigation of Fresh and Time-Dependent Rheological Properties of 3D Printed Cementitious Material
  84. Paritala Spandana, Singaram Kailash, Bathina Indira, Khan Mohd et al. (2023-08)
    Rheology and Pumpability of Mix Suitable for Extrusion-Based Concrete 3D Printing:
    A Review
  85. Zhang Nan, Sanjayan Jay (2023-08)
    Surfactants to Enable Quick Nozzle Mixing in 3D Concrete Printing
  86. Ghasemi Alireza, Naser Mohannad (2023-07)
    Tailoring 3D Printed Concrete Through Explainable Artificial Intelligence
  87. Tu Haidong, Wei Zhenyun, Bahrami Alireza, Kahla Nabil et al. (2023-06)
    Recent Advancements and Future Trends in 3D Printing Concrete Using Waste-Materials
  88. Riaz Raja, Usman Muhammad, Ali Ammar, Majid Usama et al. (2023-06)
    Inclusive Characterization of 3D Printed Concrete in Additive Manufacturing:
    A Detailed Review
  89. Pham Thi, Trinh Duy, Nguyen Thi, Do Trong et al. (2023-06)
    Study on Flexural Behavior of Printed Concrete Wide Beams Using Polypropylene-Fibers
  90. Fernandez Letízia, Caldas Lucas, Mendoza Reales Oscar (2023-05)
    Environmental Evaluation of 3D Printed Concrete Walls Considering the Life Cycle Perspective in the Context of Social Housing
  91. Bhushan Jindal Bharat, Jangra Parveen (2023-05)
    3D Printed Concrete:
    A Comprehensive Review of Raw Material’s Properties, Synthesis, Performance, and Potential Field Applications
  92. Liu Zhenbang, Li Mingyang, Moo Guo, Kobayashi Hitoshi et al. (2023-05)
    Effect of Nano-Structured Silica-Additives on the Extrusion-Based 3D Concrete Printing Application
  93. Fan Dingqiang, Zhu Jinyun, Fan Mengxin, Lu Jianxian et al. (2023-04)
    Intelligent Design and Manufacturing of Ultra-High-Performance Concrete:
    A Review
  94. Gupta Shashank, Esmaeeli Hadi, Prihar Arjun, Ghantous Rita et al. (2023-04)
    Fracture- and Transport-Analysis of Heterogeneous 3D Printed Lamellar Cementitious Materials
  95. Razzaghian Ghadikolaee Mehrdad, Cerro-Prada Elena, Pan Zhu, Korayem Asghar (2023-04)
    Nanomaterials as Promising Additives for High-Performance 3D Printed Concrete:
    A Critical Review
  96. Seo Eun-A, Kim Won-Woo, Kim Sung-Wook, Kwon Hongkyu et al. (2023-03)
    Mechanical Properties of 3D Printed Concrete with Coarse Aggregates and Polypropylene-Fiber in the Air and Underwater Environment
  97. Chen Hao, Zhang Daobo, Chen Peng, Li Ning et al. (2023-03)
    A Review of the Extruder System Design for Large-Scale Extrusion-Based 3D Concrete Printing
  98. Fonseca Mariana, Matos Ana (2023-03)
    3D Construction Printing Standing for Sustainability and Circularity:
    Material-Level Opportunities
  99. Atkinson Cynthia, Aslani Farhad (2023-03)
    Performance of 3D Printed Columns Using Self-Sensing Cementitious Composites
  100. Ibrahim Kamoru, Zijl Gideon, Babafemi Adewumi (2023-03)
    Influence of Limestone-Calcined-Clay-Cement on Properties of 3D Printed Concrete for Sustainable Construction
  101. Xu Zhuoyue, Zhang Dawang, Li Hui, Sun Xuemei (2023-02)
    Effects of the Distribution of Solid Particles on the Rheological Properties and Buildability of 3DPM Fresh Pastes with Different FA/GGBFS Content
  102. Kaushik Sandipan, Sonebi Mohammed, Amato Giuseppina, Das Utpal et al. (2023-02)
    Optimization of Mix Proportion of 3D Printable Mortar Based on Rheological Properties and Material-Strength Using Factorial Design of Experiment
  103. Şahin Hatice, Mardani Ali (2023-02)
    Mechanical Properties, Durability Performance and Inter-Layer Adhesion of 3DPC Mixtures:
    A State‐of‐the‐art Review
  104. Li Xiao-Sheng, Li Long, Zou Shuai (2023-02)
    Developing Low-pH 3D Printing Concrete Using Solid Wastes
  105. Vlieger Jentel, Boehme Luc, Blaakmeer Jan, Li Jiabin (2023-01)
    Buildability-Assessment of Mortar with Fine Recycled Aggregates for 3D Printing
  106. Zhang Chao, Jia Zijian, Luo Zhe, Deng Zhicong et al. (2022-11)
    Printability and Pore-Structure of 3D Printing Low-Carbon Concrete Using Recycled Clay-Brick-Powder with Various Particle-Features
  107. Puzatova (nee Sharanova) Anastasiia, Shakor Pshtiwan, Laghi Vittoria, Dmitrieva Maria (2022-11)
    Large-Scale 3D Printing for Construction Application by Means of Robotic Arm and Gantry 3D Printer:
    A Review
  108. Teixeira João, Schaefer Cecília, Rangel Bárbara, Maia Lino et al. (2022-11)
    A Road Map to Find in 3D Printing a New Design Plasticity for Construction:
    The State of Art
  109. Lu Bing, Li Hongliang, Li Mingyang, Wong Teck et al. (2022-11)
    Mechanism and Design of Fluid Catalytic Cracking Ash-Blended Cementitious Composites for High-Performance Printing
  110. Christen Heidi, Cho Seung, Zijl Gideon, Villiers Wibke (2022-11)
    Phase-Change-Material-Infused Recycled Brick-Aggregate in 3D Printed Concrete
  111. Li Shuai, Nguyen-Xuan Hung, Tran Jonathan (2022-11)
    Digital Design and Parametric Study of 3D Concrete Printing on Non-Planar Surfaces
  112. Chandrasekar Ravekumar, Gkantou Michaela, Nikitas Georgios, Hashim Khalid et al. (2022-10)
    Integration of 3D Concrete Printing in the Construction Industry:
    A Short Review
  113. Liu Qiang, Jiang Quan, Huang Mojia, Xin Jie et al. (2022-10)
    The Fresh and Hardened Properties of 3D Printing Cement-Base Materials with Self-Cleaning Nano-TiO2:
    An Exploratory Study
  114. Qaidi Shaker, Yahia Ammar, Tayeh B., Unis H. et al. (2022-10)
    3D Printed Geopolymer Composites:
    A Review
  115. Chen Yu, Toosumran Nuttapon, Chehab Noura, Spanjers Henri et al. (2022-10)
    Feasibility Study of Using Desalination-Brine to Control the Stiffness and Early-Age Hydration of 3D Printable Cementitious Materials
  116. Taubert Markus, Mechtcherine Viktor (2022-09)
    3D druckbarer Normalbeton mit grober Gesteinskörnung
  117. Bong Shin, Nematollahi Behzad, Nerella Venkatesh, Mechtcherine Viktor (2022-09)
    Method of Formulating 3D Printable Strain-Hardening Alkali-Activated Composites for Additive Construction
  118. Li Mingyang, Weng Yiwei, Liu Zhixin, Zhang Dong et al. (2022-09)
    Optimizing of Chemical Admixtures for 3D Printable Cementitious Materials by Central Composite Design
  119. Boddepalli Uday, Panda Biranchi, Gandhi Indu (2022-09)
    Rheology and Printability of Portland-Cement-Based Materials:
    A Review
  120. Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-09)
    3D Printing Concrete with Recycled Coarse Aggregates:
    The Influence of Pore-Structure on Inter-Layer Adhesion
  121. Pham Thi, Nguyen Thu, Trinh Thanh, Nguyen Anh et al. (2022-08)
    Development of 3D Printers for Concrete Structures:
    Mix Proportion Design Approach and Laboratory Testing
  122. Kaliyavaradhan Senthil, Ambily Parukutty, Prem Prabhat, Ghodke Swapnil (2022-08)
    Test-Methods for 3D Printable Concrete
  123. Araújo Rísia, Martinelli Antônio, Cabral Kleber, Dantas André et al. (2022-08)
    Thermal Performance of Cement-Leca Composites for 3D Printing
  124. Zhou Wen, McGee Wesley, Zhu He, Gökçe H. et al. (2022-08)
    Time-Dependent Fresh Properties Characterization of 3D Printing Engineered Cementitious Composites:
    On the Evaluation of Buildability
  125. Nodehi Mehrab, Aguayo Federico, Nodehi Shahab, Gholampour Aliakbar et al. (2022-07)
    Durability Properties of 3D Printed Concrete
  126. Delavar Mohammad, Chen Hao, Sideris Petros (2022-07)
    Design of 3D Printed Concrete Walls Under In-Plane Seismic Loading
  127. Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-06)
    Hardened Properties of 3D Printed Concrete with Recycled Coarse Aggregate
  128. Mohammad Abdul, Biernacki Joseph (2022-06)
    2D Stationary Computational Printing of Cement-Based Pastes
  129. Kondepudi Kala, Subramaniam Kolluru, Nematollahi Behzad, Bong Shin et al. (2022-05)
    Study of Particle-Packing and Paste-Rheology in Alkali-Activated Mixtures to Meet the Rheology Demands of 3D Concrete Printing
  130. Zhang Chao, Jia Zijian, Wang Xianggang, Jia Lutao et al. (2022-05)
    A Two-Phase Design-Strategy Based on the Composite of Mortar and Coarse Aggregate for 3D Printable Concrete with Coarse Aggregate
  131. Christen Heidi, Zijl Gideon, Villiers Wibke (2022-05)
    The Incorporation of Recycled Brick-Aggregate in 3D Printed Concrete
  132. Xu Zhuoyue, Zhang Dawang, Li Hui, Sun Xuemei et al. (2022-05)
    Effect of FA and GGBFS on Compressive Strength, Rheology, and Printing Properties of Cement-Based 3D Printing Material
  133. Saruhan Vedat, Keskinateş Muhammer, Felekoğlu Burak (2022-04)
    A Comprehensive Review on Fresh State Rheological Properties of Extrusion-Mortars Designed for 3D Printing Applications
  134. Liu Huawei, Liu Chao, Bai Guoliang, Wu Yiwen et al. (2022-04)
    Influence of Pore-Defects on the Hardened Properties of 3D Printed Concrete with Coarse Aggregate
  135. Cao Xiangpeng, Yu Shiheng, Cui Hongzhi, Li Zongjin (2022-04)
    3D Printing Devices and Reinforcing Techniques for Extruded Cement-Based Materials:
    A Review
  136. Nodehi Mehrab, Ozbakkaloglu Togay, Gholampour Aliakbar (2022-04)
    Effect of Supplementary Cementitious Materials on Properties of 3D Printed Conventional and Alkali-Activated Concrete:
    A Review
  137. Teixeira João, Schaefer Cecília, Maia Lino, Rangel Bárbara et al. (2022-03)
    Influence of Supplementary Cementitious Materials on Fresh Properties of 3D Printable Materials
  138. Pan Tinghong, Jiang Yaqing, Ji Xuping (2022-03)
    Inter-Layer Bonding Investigation of 3D Printing Cementitious Materials with Fluidity-Retaining Polycarboxylate-Superplasticizer and High-Dispersion Polycarboxylate Superplasticizer
  139. Zhang Chao, Deng Zhicong, Chen Chun, Zhang Yamei et al. (2022-03)
    Predicting the Static Yield-Stress of 3D Printable Concrete Based on Flowability of Paste and Thickness of Excess-Paste-Layer
  140. Ivanova Irina, Ivaniuk Egor, Bisetti Sameercharan, Nerella Venkatesh et al. (2022-03)
    Comparison Between Methods for Indirect Assessment of Buildability in Fresh 3D Printed Mortar and Concrete
  141. Cui Hongzhi, Li Yuanhong, Cao Xiangpeng, Huang Mingyang et al. (2022-03)
    Experimental Study of 3D Concrete Printing-Configurations Based on the Buildability Evaluation
  142. Cui Hongzhi, Yu Shiheng, Cao Xiangpeng, Yang Haibin (2022-03)
    Evaluation of Printability and Thermal Properties of 3D Printed Concrete Mixed with Phase-Change-Materials
  143. Guamán-Rivera Robert, Martínez-Rocamora Alejandro, García-Alvarado Rodrigo, Muñoz-Sanguinetti Claudia et al. (2022-02)
    Recent Developments and Challenges of 3D Printed Construction:
    A Review of Research Fronts
  144. Liu Junli, Nguyen Vuong, Panda Biranchi, Fox Kate et al. (2022-02)
    Additive Manufacturing of Sustainable Construction Materials and Form-Finding Structures:
    A Review on Recent Progresses
  145. Dey Dhrutiman, Srinivas Dodda, Panda Biranchi, Suraneni Prannoy et al. (2022-02)
    Use of Industrial Waste-Materials for 3D Printing of Sustainable Concrete:
    A Review
  146. Cui Jinyang, He Zhen, Zhang Guozhi, Cai Xinhua (2022-01)
    Rheological Properties of Sprayable Ultra-High-Performance Concrete with Different Viscosity-Enhancing Agents
  147. Ramyar Elham, Cusatis Gianluca (2021-11)
    Discrete Fresh Concrete-Model for Simulation of Ordinary, Self-Consolidating, and Printable Concrete-Flow
  148. Liu Junli, Li Shuai, Gunasekara Chamila, Fox Kate et al. (2021-11)
    3D Printed Concrete with Recycled Glass:
    Effect of Glass Gradation on Flexural Strength and Microstructure
  149. Izadgoshasb Hamed, Kandiri Amirreza, Shakor Pshtiwan, Laghi Vittoria et al. (2021-11)
    Predicting Compressive Strength of 3D Printed Mortar in Structural Members Using Machine Learning
  150. Chen Yu, He Shan, Gan Yidong, Çopuroğlu Oğuzhan et al. (2021-11)
    A Review of Printing-Strategies, Sustainable Cementitious Materials and Characterization Methods in the Context of Extrusion-Based 3D Concrete Printing
  151. Pham Luong, Panda Biranchi, Tran Jonathan (2021-11)
    Fresh and Hardened Properties of 3D Printable Polymer-Fiber-Reinforced High-Performance Cementitious Composite
  152. Douba AlaEddin, Kawashima Shiho (2021-11)
    Use of Nano-Clays and Methylcellulose to Tailor Rheology for Three-Dimensional Concrete Printing
  153. Kondepudi Kala, Subramaniam Kolluru (2021-11)
    Extrusion-Based Three-Dimensional Printing Performance of Alkali-Activated Binders
  154. Lyu Fuyan, Zhao Dongliang, Hou Xiaohui, Sun Li et al. (2021-10)
    Overview of the Development of 3D Printing Concrete:
    A Review
  155. Yang Yekai, Wu Chengqing, Liu Zhongxian, Wang Hailiang et al. (2021-10)
    Mechanical Anisotropy of Ultra-High-Performance Fiber-Reinforced Concrete for 3D Printing
  156. Shahzad Qamar, Shen Junyi, Naseem Rabia, Yao Yonggang et al. (2021-10)
    Influence of Phase-Change-Material on Concrete Behavior for Construction 3D Printing
  157. Zhang Nan, Xia Ming, Sanjayan Jay (2021-10)
    Short-Duration Near-Nozzle Mixing for 3D Concrete Printing
  158. Uribe-Pinzon Sebastian, Mosquera Mariana, Cardenas-Pulido Jhon, Higuera Camilo (2021-10)
    Advances and Current Trends on the Use of 3D Printed Concrete for Building Fabrication
  159. Che Yujun, Tang Shengwen, Yang Huashan, Li Weiwei et al. (2021-08)
    Influences of Air-Voids on the Performance of 3D Printing Cementitious Materials
  160. Chen Yu, He Shan, Zhang Yu, Wan Zhi et al. (2021-08)
    3D Printing of Calcined-Clay-Limestone-Based Cementitious Materials
  161. Rehman Atta, Kim Jung-Hoon (2021-07)
    3D Concrete Printing:
    A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics
  162. Yu Shiwei, Xia Ming, Sanjayan Jay, Yang Lin et al. (2021-07)
    Microstructural Characterization of 3D Printed Concrete
  163. Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
    Mix-Design Concepts for 3D Printable Concrete:
    A Review
  164. Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
    Large-Scale 3D Printing Concrete Technology:
    Current Status and Future Opportunities
  165. Chen Yidong, Zhang Yunsheng, Pang Bo, Liu Zhiyong et al. (2021-05)
    Extrusion-Based 3D Printing Concrete with Coarse Aggregate:
    Printability and Direction-Dependent Mechanical Performance
  166. Javed Ali, Mantawy Islam, Azizinamini Atorod (2021-05)
    3D Printing of Ultra-High-Performance Concrete for Robotic Bridge Construction
  167. Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2021-05)
    Extrusion Rheometer for 3D Concrete Printing
  168. Salman Nazar, Ma Guowei, Ijaz Nauman, Wang Li (2021-04)
    Importance and Potential of Cellulosic Materials and Derivatives in Extrusion-Based 3D Concrete Printing:
    Prospects and Challenges
  169. Bong Shin, Xia Ming, Nematollahi Behzad, Shi Caijun (2021-04)
    Ambient Temperature Cured ‘Just-Add-Water’ Geopolymer for 3D Concrete Printing Applications
  170. Ning Xin, Liu Tong, Wu Chunlin, Wang Chao (2021-04)
    3D Printing in Construction:
    Current Status, Implementation Hindrances, and Development Agenda
  171. Ting Guan, Tay Yi, Tan Ming (2021-04)
    Experimental Measurement on the Effects of Recycled Glass-Cullets as Aggregates for Construction 3D Printing
  172. Bai Gang, Wang Li, Ma Guowei, Sanjayan Jay et al. (2021-03)
    3D Printing Eco-Friendly Concrete Containing Under-Utilised and Waste Solids as Aggregates
  173. Teixeira João, Schaefer Cecília, Rangel Bárbara, Alves Jorge et al. (2021-03)
    Development of 3D Printing Sustainable Mortars Based on a Bibliometric Analysis
  174. Kondepudi Kala, Subramaniam Kolluru (2021-02)
    Formulation of Alkali-Activated Fly-Ash-Slag Binders for 3D Concrete Printing
  175. Weng Yiwei, Li Mingyang, Zhang Dong, Tan Ming et al. (2021-02)
    Investigation of Inter-Layer Adhesion of 3D Printable Cementitious Material from the Aspect of Printing-Process
  176. Vallurupalli Kavya, Farzadnia Nima, Khayat Kamal (2021-01)
    Effect of Flow Behavior and Process-Induced Variations on Shape Stability of 3D Printed Elements:
    A Review
  177. Weng Yiwei, Li Mingyang, Wong Teck, Tan Ming (2021-01)
    Synchronized Concrete and Bonding-Agent-Deposition-System for Inter-Layer Bond Strength Enhancement in 3D Concrete Printing
  178. Plessis Anton, Babafemi Adewumi, Paul Suvash, Panda Biranchi et al. (2020-12)
    Biomimicry for 3D Concrete Printing:
    A Review and Perspective
  179. Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
    A Review of 3D Printed Concrete:
    Performance-Requirements, Testing Measurements and Mix-Design
  180. Antoni Antoni, Widjaya David, Wibowo Alexander, Chandra Jimmy et al. (2020-12)
    Using Calcium Oxide and Accelerator to Control the Initial Setting-Time of Mortar in 3D Concrete Printing
  181. Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
    Extrusion-Based Concrete 3D Printing from a Material Perspective:
    A State of the Art Review
  182. Chu Shaohua, Li Leo, Kwan Albert (2020-09)
    Development of Extrudable High-Strength Fiber-Reinforced Concrete Incorporating Nano-Calcium-Carbonate
  183. Yu Shiwei, Du Hongjian, Sanjayan Jay (2020-07)
    Aggregate-Bed 3D Concrete Printing with Cement-Paste Binder
  184. Chang Ze, Schlangen Erik, Šavija Branko (2020-07)
    Extended-Lattice-Model to Simulate the Printing-Process of 3D Printed Cementitious Materials
  185. Chen Yu, Rodríguez Claudia, Li Zhenming, Chen Boyu et al. (2020-07)
    Effect of Different Grade Levels of Calcined Clays on Fresh and Hardened Properties of Ternary-Blended Cementitious Materials for 3D Printing
  186. He Lewei, Chow Wai, Li Hua (2020-06)
    Effects of Inter-Layer Notch and Shear Stress on Inter-Layer Strength of 3D Printed Cement-Paste
  187. Shahzad Qamar, Wang Xujiang, Wang Wenlong, Wan Yi et al. (2020-06)
    Coordinated Adjustment and Optimization of Setting-Time, Flowability, and Mechanical Strength for Construction 3D Printing Material Derived from Solid Waste
  188. Kim Seonghoon, Kim Taewook, Kim Buyoung, Kim Hong-dae et al. (2020-06)
    Early Hydration and Hardening of OPC-CSA Blends for Cementitious Structure of 3D Printing
  189. Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2020-05)
    Mechanical Behavior of Printed Strain-Hardening Cementitious Composites
  190. Khan Mohd (2020-04)
    Mix Suitable for Concrete 3D Printing:
    A Review
  191. Khan Mohammad, Sanchez Florence, Zhou Hongyu (2020-04)
    3D Printing of Concrete:
    Beyond Horizons
  192. Chen Mingxu, Yang Lei, Zheng Yan, Huang Yongbo et al. (2020-04)
    Yield-Stress and Thixotropy-Control of 3D Printed Calcium-Sulfoaluminate Cement Composites with Metakaolin Related to Structural Build-Up
  193. Özalp Fatih, Yılmaz Halit (2020-03)
    Fresh and Hardened Properties of 3D High-Strength Printing Concrete and Its Recent Applications
  194. Shahsavari Rouzbeh, Hwang Sung (2020-03)
    Bio-Iinspired Cementitious Materials:
    Main Strategies, Progress, and Applications
  195. Manikandan Karthick, Wi Kwangwoo, Zhang Xiao, Wang Kejin et al. (2020-03)
    Characterizing Cement Mixtures for Concrete 3D Printing
  196. Grigoryan Erik, Semenova M. (2020-02)
    Automation of the Construction Process by Using a Hinged Robot with Interchangeable Nozzles
  197. Lao Wenxin, Li Mingyang, Wong Teck, Tan Ming et al. (2020-02)
    Improving Surface-Finish-Quality in Extrusion-Based 3D Concrete Printing Using Machine-Learning-Based Extrudate-Geometry-Control
  198. Ma Guowei, Li Yanfeng, Wang Li, Zhang Junfei et al. (2020-01)
    Real-Time Quantification of Fresh and Hardened Mechanical Property for 3D Printing Material by Intellectualization with Piezoelectric Transducers
  199. Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2020-01)
    Yield-Stress-Criteria to Assess the Buildability of 3D Concrete Printing
  200. Siddika Ayesha, Mamun Md., Ferdous Wahid, Saha Ashish et al. (2019-12)
    3D Printed Concrete:
    Applications, Performance, and Challenges
  201. Lafhaj Zoubeir, Rabenantoandro Andry, Moussaoui Soufiane, Dakhli Zakaria et al. (2019-12)
    Experimental Approach for Printability-Assessment:
    Toward a Practical Decision-Making Framework of Printability for Cementitious Materials
  202. Grigoryan Erik, Babanina Anna, Kulakov Kirill (2019-12)
    Automation of the Construction Process by Using a Hinged Robot with Interchangeable Nozzles
  203. Kruger Jacques, Cho Seung, Zeranka Stephan, Vintila Cristian et al. (2019-12)
    3D Concrete Printer Parameter Optimization for High-Rate Digital Construction Avoiding Plastic Collapse
  204. Tiryaki Mehmet, Zhang Xu, Pham Quang-Cuong (2019-11)
    Printing-While-Moving:
    A New Paradigm for Large-Scale Robotic 3D Printing
  205. Nerella Venkatesh, Krause Martin, Mechtcherine Viktor (2019-11)
    Direct Printing-Test for Buildability of 3D Printable Concrete Considering Economic Viability
  206. Yeon Jaeheum (2019-10)
    Short-Term Deformability of Three-Dimensional Printable EVA-Modified Cementitious Mortars
  207. Zhang Chao, Hou Zeyu, Chen Chun, Zhang Yamei et al. (2019-09)
    Design of 3D Printable Concrete Based on the Relationship Between Flowability of Cement-Paste and Optimum Aggregate-Content
  208. Mechtcherine Viktor, Nerella Venkatesh, Will Frank, Näther Mathias et al. (2019-08)
    Large-Scale Digital Concrete Construction:
    CONPrint3D Concept for On-Site, Monolithic 3D Printing
  209. Kim Kwan, Yeon Jaeheum, Lee Hee (2019-08)
    Strength Development Characteristics of SBR-Modified Cementitious Mixtures for 3D Concrete Printing
  210. Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
    Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction
  211. Markin Slava, Nerella Venkatesh, Schröfl Christof, Guseynova Gyunay et al. (2019-07)
    Material-Design and Performance-Evaluation of Foam-Concrete for Digital Fabrication
  212. Yeon Kyu-Seok, Kim Kwan, Yeon Jaeheum, Lee Hee (2019-07)
    Fresh Properties of EVA-Modified Cementitious Mixtures for Use in Additive Construction by Extrusion
  213. Weng Yiwei, Ruan Shaoqin, Li Mingyang, Mo Liwu et al. (2019-06)
    Feasibility Study on Sustainable-Magnesium-Potassium-Phosphate Cement-Paste for 3D Printing
  214. Chen Yu, Figueiredo Stefan, Yalçınkaya Çağlar, Çopuroğlu Oğuzhan et al. (2019-04)
    The Effect of Viscosity-Modifying Admixture on the Extrudability of Limestone and Calcined-Clay-Based Cementitious Material for Extrusion-Based 3D Concrete Printing
  215. Lu Bing, Qian Ye, Li Mingyang, Weng Yiwei et al. (2019-04)
    Designing Spray-Based 3D Printable Cementitious Materials with Fly-Ash-Cenosphere and Air-Entraining Agent
  216. Ting Guan, Tay Yi, Qian Ye, Tan Ming (2019-03)
    Utilization of Recycled Glass for 3D Concrete Printing:
    Rheological and Mechanical Properties
  217. Zuo Zibo, Gong Jian, Huang Yulin, Zhan Yijian et al. (2019-03)
    Experimental Research on Transition from Scale 3D Printing to Full-Size Printing in Construction
  218. Lu Bing, Weng Yiwei, Li Mingyang, Qian Ye et al. (2019-02)
    A Systematical Review of 3D Printable Cementitious Materials
  219. Weng Yiwei, Li Mingyang, Liu Zhixin, Lao Wenxin et al. (2018-12)
    Printability and Fire Performance of a Developed 3D Printable Fiber-Reinforced Cementitious Composites under Elevated Temperatures
  220. Liu Zhixin, Li Mingyang, Weng Yiwei, Wong Teck et al. (2018-12)
    Mixture-Design-Approach to Optimize the Rheological Properties of the Material Used in 3D Cementitious Material-Printing
  221. Weng Yiwei, Lu Bing, Li Mingyang, Liu Zhixin et al. (2018-09)
    Empirical Models to Predict Rheological Properties of Fiber-Reinforced Cementitious Composites for 3D Printing
  222. Chen Yu, Veer Frederic, Çopuroğlu Oğuzhan, Schlangen Erik (2018-09)
    Feasibility of Using Low CO2 Concrete Alternatives in Extrusion-Based 3D Concrete Printing
  223. Yu Jing, Leung Christopher (2018-09)
    Impact of 3D Printing-Direction on Mechanical Performance of Strain-Hardening Cementitious Composite (SHCC)
  224. Zhang Xu, Li Mingyang, Lim Jian, Weng Yiwei et al. (2018-08)
    Large-Scale 3D Printing by a Team of Mobile Robots
  225. Lu Bing, Li Mingyang, Lao Wenxin, Weng Yiwei et al. (2018-08)
    Experimental Investigation of Printing Parameters on Material-Distribution in 3D Spray Cementitious Material Printing Process
  226. Lu Bing, Li Mingyang, Lao Wenxin, Weng Yiwei et al. (2018-08)
    Effect of Spray-Based Printing Parameters on Cementitious Material-Distribution
  227. Annapareddy Ashokreddy, Panda Biranchi, Ting Guan, Li Mingyang et al. (2018-05)
    Flow And Mechanical Properties of 3D Printed Cementitious Material With Recycled Glass-Aggregates
  228. Lim Jian, Weng Yiwei, Li Mingyang (2018-05)
    Effect of Fiber-Reinforced Polymer on Mechanical Performance of 3D Printed Cementitious Material
  229. Liu Zhixin, Li Mingyang, Wong Teck, Tan Ming (2018-05)
    Measurement of the Fresh Rheological Properties of Material in 3D Printing
  230. Lu Bing, Li Mingyang, Qian Shunzhi, Leong Kah et al. (2018-05)
    Develop Cementitious Materials Incoporating Fly-Ash-Cenophere for Spray-Based 3D Printing
  231. Ting Andrew, Tay Yi, Annapareddy Ashokreddy, Li Mingyang et al. (2018-05)
    Effect of Recycled-Glass Gradation in 3D Cementitious Material-Printing
  232. Weng Yiwei, Qian Shunzhi, He Lewei, Li Mingyang et al. (2018-05)
    3D Printable High-Performance Fiber-Reinforced Cementitious Composites For Large-Scale Printing

BibTeX
@article{weng_li_tan_qian.2018.D3PCMvFTTaMPM,
  author            = "Yiwei Weng and Mingyang Li and Ming Jen Tan and Shunzhi Qian",
  title             = "Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model",
  doi               = "10.1016/j.conbuildmat.2017.12.112",
  year              = "2018",
  journal           = "Construction and Building Materials",
  volume            = "163",
  pages             = "600--610",
}
Formatted Citation

Y. Weng, M. Li, M. J. Tan and S. Qian, “Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model”, Construction and Building Materials, vol. 163, pp. 600–610, 2018, doi: 10.1016/j.conbuildmat.2017.12.112.

Weng, Yiwei, Mingyang Li, Ming Jen Tan, and Shunzhi Qian. “Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model”. Construction and Building Materials 163 (2018): 600–610. https://doi.org/10.1016/j.conbuildmat.2017.12.112.