Effect of Supplementary Cementitious Materials on Properties of 3D Printed Conventional and Alkali-Activated Concrete (2022-04)¶
, ,
Journal Article - Automation in Construction, Vol. 138
Abstract
3D printing is a novel technology that has been introduced to construction industry and has been found to have numerous potentials including high speed fabrication of customized building elements without formworks and low material waste. Despite such superiority, to ensure the extrudability of materials and their coherent adhesion, most commonly, a higher content of the Portland cement (PC) with other chemical admixtures are used in 3D printed concrete (3DPC) mixes. This common practice, however, can result in augmentation of greenhouse gas emissions and also increase in the costs associated with 3D printing. To avoid this, and provide favorable printability properties, supplementary cementitious materials (SCMs) have gradually become a key ingredient of 3DPC. Utilizing SCMs, previous studies have found the critical effects of SCMs on operational aspects of 3D printers and their controls on a variety of functional parameters. To closely evaluate such parameters, the present study provides a review of the effect of SCMs on 3DPC with and without alkaline activator, focusing on manufacturing techniques, rheological properties, mechanical properties, bond strength between printed layers, effect of curing regime, and shrinkage behavior. The main challenges and future research direction of 3DPC are also presented. Based on the presented review, it is found that coal fly ash, silica fume, blast furnace slag and metakaolin are the main SCMs that are commonly used to enhance pumpability, printability, and buildability of 3DPC, as well as addressing environmental issues associated with the larger use of PC in 3DPC.
¶
98 References
- Agustí-Juan Isolda, Habert Guillaume (2016-11)
Environmental Design Guidelines for Digital Fabrication - Alghamdi Hussam, Nair Sooraj, Neithalath Narayanan (2019-02)
Insights into Material-Design, Extrusion Rheology, and Properties of 3D Printable Alkali-Activated Fly-Ash-Based Binders - Alhumayani Hashem, Gomaa Mohamed, Soebarto Veronica, Jabi Wassim (2020-06)
Environmental Assessment of Large-Scale 3D Printing in Construction:
A Comparative Study between Cob and Concrete - Al-Qutaifi Sarah, Nazari Ali, Bagheri Ali (2018-07)
Mechanical Properties of Layered Geopolymer Structures Applicable in Concrete 3D Printing - Ashrafi Negar, Nazarian Shadi, Meisel Nicholas, Duarte José (2020-10)
Experimental Prediction of Material-Deformation in Large-Scale Additive Manufacturing of Concrete - Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
Additive Manufacturing of Concrete in Construction:
Potentials and Challenges of 3D Concrete Printing - Brun Francis, Gaspar Florindo, Mateus Artur, Vitorino João et al. (2020-07)
Experimental Study on 3D Printing of Concrete with Overhangs - Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
3D Printing Using Concrete-Extrusion:
A Roadmap for Research - Cesaretti Giovanni, Dini Enrico, Kestelier Xavier, Colla Valentina et al. (2013-08)
Building Components for an Outpost on the Lunar Soil by Means of a Novel 3D Printing Technology - Chen Yu, Li Zhenming, Figueiredo Stefan, Çopuroğlu Oğuzhan et al. (2019-04)
Limestone and Calcined-Clay-Based Sustainable Cementitious Materials for 3D Concrete Printing:
A Fundamental Study of Extrudability and Early-Age Strength Development - Chen Mingxu, Yang Lei, Zheng Yan, Huang Yongbo et al. (2020-04)
Yield-Stress and Thixotropy-Control of 3D Printed Calcium-Sulfoaluminate Cement Composites with Metakaolin Related to Structural Build-Up - Christ Susanne, Schnabel Martin, Vorndran Elke, Groll Jürgen et al. (2014-10)
Fiber-Reinforcement During 3D Printing - Cicione Antonio, Kruger Jacques, Walls Richard, Zijl Gideon (2020-05)
An Experimental Study of the Behavior of 3D Printed Concrete at Elevated Temperatures - Ding Tao, Xiao Jianzhuang, Zou Shuai, Wang Yu (2020-06)
Hardened Properties of Layered 3D Printed Concrete with Recycled Sand - Federowicz Karol, Kaszyńska Maria, Zieliński Adam, Hoffmann Marcin (2020-06)
Effect of Curing Methods on Shrinkage Development in 3D Printed Concrete - Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2019-03)
An Approach to Develop Printable Strain-Hardening Cementitious Composites - Guo Xiaolu, Yang Junyi, Xiong Guiyan (2020-09)
Influence of Supplementary Cementitious Materials on Rheological Properties of 3D Printed Fly-Ash-Based Geopolymer - Han Yilong, Yang Zhihan, Ding Tao, Xiao Jianzhuang (2020-08)
Environmental and Economic Assessment on 3D Printed Buildings with Recycled Concrete - Jeong Jae, Jang Kyong, Park Chan, Lee Seung et al. (2016-05)
Effect of Admixtures on Pumpability for High-Strength Concrete - Jeon Kwang-Hyun, Park Min-Beom, Kang Min-Kyung, Kim Jung-Hoon (2013-11)
Development of an Automated Freeform Construction System and Its Construction Materials - Jipa Mihail-Andrei, Bernhard Mathias, Meibodi Mania, Dillenburger Benjamin (2016-11)
3D Printed Stay-in-Place Formwork for Topologically Optimized Concrete Slabs - Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
Cementitious Materials for Construction-Scale 3D Printing:
Laboratory Testing of Fresh Printing Mixture - Khan Mohd (2020-04)
Mix Suitable for Concrete 3D Printing:
A Review - Khoshnevis Behrokh, Hwang Dooil, Yao Ke, Yeh Zhenghao (2006-05)
Mega-Scale Fabrication by Contour Crafting - Kim Kwan, Yeon Jaeheum, Lee Hee, Yeon Jung (2019-08)
Dimensional Stability of SBR-Modified Cementitious Mixtures for Use in 3D Additive Construction - Kondepudi Kala, Subramaniam Kolluru (2021-02)
Formulation of Alkali-Activated Fly-Ash-Slag Binders for 3D Concrete Printing - Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
3D Concrete Printing:
A Lower-Bound Analytical Model for Buildability-Performance-Quantification - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Hardened Properties of High-Performance Printing Concrete - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Li Zhijian, Wang Li, Ma Guowei (2018-05)
Method for the Enhancement of Buildability and Bending-Resistance of 3D Printable Tailing Mortar - Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
Developments in Construction-Scale Additive Manufacturing Processes - Lim Jian, Panda Biranchi, Pham Quang-Cuong (2018-05)
Improving Flexural Characteristics of 3D Printed Geopolymer Composites with In-Process Steel-Cable-Reinforcement - Liu Zhixin, Li Mingyang, Weng Yiwei, Wong Teck et al. (2018-12)
Mixture-Design-Approach to Optimize the Rheological Properties of the Material Used in 3D Cementitious Material-Printing - Lu Bing, Li Mingyang, Lao Wenxin, Weng Yiwei et al. (2018-08)
Experimental Investigation of Printing Parameters on Material-Distribution in 3D Spray Cementitious Material Printing Process - Lu Bing, Li Mingyang, Lao Wenxin, Weng Yiwei et al. (2018-08)
Effect of Spray-Based Printing Parameters on Cementitious Material-Distribution - Lu Bing, Weng Yiwei, Li Mingyang, Qian Ye et al. (2019-02)
A Systematical Review of 3D Printable Cementitious Materials - Ma Guowei, Li Zhijian, Wang Li (2017-12)
Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing - Ma Guowei, Li Zhijian, Wang Li, Bai Gang (2018-10)
Micro-Cable-Reinforced Geopolymer Composite for Extrusion-Based 3D Printing - Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing - Ma Guowei, Sun Junbo, Wang Li, Aslani Farhad et al. (2018-09)
Electromagnetic and Microwave-Absorbing Properties of Cementitious Composite for 3D Printing Containing Waste Copper Solids - Ma Guowei, Wang Li (2017-08)
A Critical Review of Preparation Design and Workability Measurement of Concrete Material for Large-Scale 3D Printing - Ma Guowei, Zhang Junfei, Wang Li, Li Zhijian et al. (2018-06)
Mechanical Characterization of 3D Printed Anisotropic Cementitious Material by the Electromechanical Transducer - Makul Natt (2020-07)
Advanced Smart Concrete:
A Review of Current Progress, Benefits and Challenges - Mechtcherine Viktor, Grafe Jasmin, Nerella Venkatesh, Spaniol Erik et al. (2018-05)
3D Printed Steel-Reinforcement for Digital Concrete Construction:
Manufacture, Mechanical Properties and Bond Behavior - Mengesha Meron, Schmidt Albrecht, Göbel Luise, Lahmer Tom (2020-07)
Numerical Modeling of an Extrusion-Based 3D Concrete Printing-Process Considering a Spatially-Varying Pseudo-Density Approach - Mohammad Malek, Masad Eyad, Ghamdi Sami (2020-12)
3D Concrete Printing Sustainability:
A Comparative Life Cycle Assessment of Four Construction Method Scenarios - Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
Extrusion-Based Concrete 3D Printing from a Material Perspective:
A State of the Art Review - Muñoz Ivan, Madrid Javier, Muñiz Manuel, Uhart Maylis et al. (2021-01)
Life Cycle Assessment of Integrated Additive-Subtractive Concrete 3D Printing - Nair Sooraj, Alghamdi Hussam, Arora Aashay, Mehdipour Iman et al. (2019-01)
Linking Fresh Paste Microstructure, Rheology and Extrusion-Characteristics of Cementitious Binders for 3D Printing - Nematollahi Behzad, Bong Shin, Xia Ming, Sanjayan Jay (2020-07)
Digital Fabrication of ‘Just-Add-Water’ Geopolymers:
Effects of Curing Condition and Print-Time Interval - Nematollahi Behzad, Vijay Praful, Sanjayan Jay, Nazari Ali et al. (2018-11)
Effect of Polypropylene Fiber Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction - Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing - Nerella Venkatesh, Mechtcherine Viktor (2019-02)
Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology (CONPrint3D) - Nerella Venkatesh, Näther Mathias, Iqbal Arsalan, Butler Marko et al. (2018-09)
In-Line Quantification of Extrudability of Cementitious Materials for Digital Construction - Ngo Tuan, Kashani Alireza, Imbalzano Gabriele, Nguyen Quynh et al. (2018-02)
Additive Manufacturing (3D Printing):
A Review of Materials, Methods, Applications and Challenges - Ogura Hiroki, Nerella Venkatesh, Mechtcherine Viktor (2018-08)
Developing and Testing of Strain-Hardening Cement-Based Composites (SHCC) in the Context of 3D Printing - Panda Biranchi, Bhagath Singh Gangapatnam, Unluer Cise, Tan Ming (2019-02)
Synthesis and Characterization of One-Part Geopolymers for Extrusion-Based 3D Concrete Printing - Panda Biranchi, Lim Jian, Tan Ming (2019-02)
Mechanical Properties and Deformation Behavior of Early-Age Concrete in the Context of Digital Construction - Panda Biranchi, Mohamed Nisar, Paul Suvash, Bhagath Singh Gangapatnam et al. (2019-07)
The Effect of Material Fresh Properties and Process Parameters on Buildability and Inter-Layer Adhesion of 3D Printed Concrete - Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
Additive Manufacturing of Geopolymer for Sustainable Built Environment - Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar - Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material - Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2018-11)
Improving the 3D Printability of High-Volume Fly-Ash Mixtures via the Use of Nano-Attapulgite-Clay - Panda Biranchi, Tan Ming (2018-03)
Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing - Panda Biranchi, Tan Ming (2018-11)
Rheological Behavior of High-Volume Fly-Ash Mixtures Containing Micro-Silica for Digital Construction Application - Panda Biranchi, Tay Yi, Paul Suvash, Tan Ming (2018-05)
Current Challenges and Future Potential of 3D Concrete Printing - Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing - Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction - Pegna Joseph (1997-02)
Exploratory Investigation of Solid Freeform Construction - Rahul Attupurathu, Santhanam Manu (2020-02)
Evaluating the Printability of Concretes Containing Lightweight Coarse Aggregates - Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
3D Printable Concrete:
Mixture-Design and Test-Methods - Roussel Nicolas (2018-05)
Rheological Requirements for Printable Concretes - Rushing Todd, Chaar Ghassan, Eick Brian, Burroughs Jedadiah et al. (2017-01)
Investigation of Concrete Mixtures for Additive Construction - Rushing Todd, Stynoski Peter, Barna Lynette, Chaar Ghassan et al. (2019-02)
Investigation of Concrete Mixtures for Additive Construction - Salet Theo, Ahmed Zeeshan, Bos Freek, Laagland Hans (2018-05)
Design of a 3D Printed Concrete Bridge by Testing - Sambucci Matteo, Valente Marco (2021-06)
Influence of Waste-Tire-Rubber-Particles-Size on the Microstructural, Mechanical, and Acoustic Insulation Properties of 3D Printable Cement Mortars - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete - Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
Vision of 3D Printing with Concrete:
Technical, Economic and Environmental Potentials - Soltan Daniel, Li Victor (2018-03)
A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing - Souza Marcelo, Ferreira Igor, Moraes Elisângela, Senff Luciano et al. (2020-09)
3D Printed Concrete for Large-Scale Buildings:
An Overview of Rheology, Printing Parameters, Chemical Admixtures, Reinforcements, and Economic and Environmental Prospects - Tay Yi, Li Mingyang, Tan Ming (2019-04)
Effect of Printing Parameters in 3D Concrete Printing:
Printing Region and Support Structures - Tay Yi, Qian Ye, Tan Ming (2019-05)
Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test - Ting Andrew, Tay Yi, Annapareddy Ashokreddy, Li Mingyang et al. (2018-05)
Effect of Recycled-Glass Gradation in 3D Cementitious Material-Printing - Ting Guan, Tay Yi, Qian Ye, Tan Ming (2019-03)
Utilization of Recycled Glass for 3D Concrete Printing:
Rheological and Mechanical Properties - Valente Marco, Sibai Abbas, Sambucci Matteo (2019-09)
Extrusion-Based Additive Manufacturing of Concrete Products:
Revolutionizing and Remodeling the Construction Industry - Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
Digital Concrete:
A Review - Weng Yiwei, Li Mingyang, Liu Zhixin, Lao Wenxin et al. (2018-12)
Printability and Fire Performance of a Developed 3D Printable Fiber-Reinforced Cementitious Composites under Elevated Temperatures - Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model - Weng Yiwei, Lu Bing, Li Mingyang, Liu Zhixin et al. (2018-09)
Empirical Models to Predict Rheological Properties of Fiber-Reinforced Cementitious Composites for 3D Printing - Weng Yiwei, Qian Shunzhi, He Lewei, Li Mingyang et al. (2018-05)
3D Printable High-Performance Fiber-Reinforced Cementitious Composites For Large-Scale Printing - Weng Yiwei, Ruan Shaoqin, Li Mingyang, Mo Liwu et al. (2019-06)
Feasibility Study on Sustainable-Magnesium-Potassium-Phosphate Cement-Paste for 3D Printing - Xia Ming, Nematollahi Behzad, Sanjayan Jay (2019-02)
Development of Powder-Based 3D Concrete Printing Using Geopolymers - Xia Ming, Nematollahi Behzad, Sanjayan Jay (2019-09)
Post-Processing Techniques to Enhance Strength of Portland Cement Mortar Digitally Fabricated Using Powder-Based 3D Printing Process - Xiao Jianzhuang, Han Nv, Zhang Lihai, Zou Shuai (2021-05)
Mechanical and Microstructural Evolution of 3D Printed Concrete with Polyethylene-Fiber and Recycled Sand at Elevated Temperatures - Yao Yue, Hu Mingming, Maio Francesco, Cucurachi Stefano (2019-08)
Life Cycle Assessment of 3D Printing Geopolymer Concrete:
An Ex‐Ante Study - Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
A Review of the Current Progress and Application of 3D Printed Concrete - Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete - Zuo Zibo, Gong Jian, Huang Yulin, Zhan Yijian et al. (2019-03)
Experimental Research on Transition from Scale 3D Printing to Full-Size Printing in Construction
65 Citations
- Tushar Fazlul, Hasan Mehedi, Hasan Kamrul, Mawa Jannatul et al. (2026-01)
Factors Affecting Flowability and Rheological Behavior of 3D Printed Concrete:
A Comprehensive Review - Rangel Carolina, Salet Theo, Lucas Sandra (2025-12)
A Design Methodology for Sustainable Lightweight 3D-Printable Concrete with SCMs - Taborda-Llano Isabella, Hoyos-Montilla Ary, Asensio Eloy, Guerrero Ana et al. (2025-12)
Influence of the Construction Process Parameters on the Mechanical Performance and Durability of 3D Printed Concrete:
A Systematic Review - Öztürk Ece, Ince Ceren, Borgianni Yuri, Nicolaides Demetris et al. (2025-12)
Printability, Engineering Properties and Environmental Implications of 3D-Printed Cementitious Mortars Incorporating Hydrated Lime, Tile Powder and Accelerator - Tao Jie-Lin, Hu Shengming, Duan Zhenhua, Jiao Dengwu (2025-11)
Magneto-Responsive Flow Behavior and Early-Age Microstructural Evolution of 3D Printing Lightweight Concrete with Fly Ash Cenospheres - Öztürk Ece, Borgianni Yuri, Ince Ceren (2025-10)
3D Printing in the Construction Sector:
Identification of Key Topics, Technologies, Applications and Relevant Factors Discussed in the Literature - Gajjar Parth, Gajjar T., Tangirala Aniruddha, Shrestha Ajad (2025-10)
Advancing 3D Printing in Construction:
Rheological Behaviors of Cementitious Composites with Supplementary Materials - Zhong Kuangnan, Huang Kaiyun, Liu Zhichao, Wang Fazhou et al. (2025-10)
Dual Strategies for Enhancing Carbonation Curing in 3D Printing Steel Slag Mortars:
Material Modification and Curing Process Innovation - Válek Josef, Romanová Dorota (2025-09)
3D Concrete Printing Simulating Device in Comparison to Real Printing and Aggregate Substitutes - Gencel Osman, Nodehi Mehrab, Subaşı Serkan, Ustaoğlu Abid et al. (2025-09)
Properties of 3D Printed Concrete Containing Microencapsulated Phase Change Material - Mararo Ian, Babafemi Adewumi, Aigbavboa Clinton (2025-09)
Towards Understanding the Perceptions of 3D Construction Printing in Kenya - Zhang Nan, Sanjayan Jay (2025-08)
Concrete 3D Printing and Digital Fabrication Technologies for Bridge Construction - Gerges Isabelle, Farraj Faten, Youssef Nicolas, Antczak Emmanuel et al. (2025-07)
Methodologies to Design Optimum 3D Printable Mortar Mix:
A Review - Ali Syed, Haq Mohd, Khan Rizwan, Hashmi Ahmad (2025-07)
A Comprehensive Review on 3D Printing of Concrete:
Materials, Methods and Mechanical Properties - Irshidat Mohammad, Amjad Umar, Kumar Kishor, John John et al. (2025-06)
Enhancing the Mix Design in 3D Concrete Printing Through Systematic Optimization Process - Lin Wenyu, Wang Li, Li Zhijian, Bai Gang et al. (2025-06)
Multi-Scale Fabrication and Challenges in 3D Printing of Special -Shaped Concrete Structures - Mohamed Osama, Mishra Anamika, Isam Fida (2025-05)
An Overview of 3D Printed Concrete for Building Structures:
Material Properties, Sustainability, Future Opportunities, and Challenges - Kuang Hao, Deng Yang, Wang Dong, Jian Shouwei et al. (2025-05)
Strengthening Effect of In-Situ Sprayed UV-Curable Polyurethane-Acrylate Resin Coating on Slag-Based 3D Printing Concrete - Kaya Ebru, Ciza Baraka, Yalçınkaya Çağlar, Felekoğlu Burak et al. (2025-05)
A Comparative Study on the Effectiveness of Fly Ash and Blast Furnace Slag as Partial Cement Substitution in 3D Printable Concrete - Ali Shah Syed, Zhang Shipeng, Xuan Dongxing, Poon Chi (2025-04)
Development of a Novel Mixing Strategy for Set-on-Demand Printing of One-Part Geopolymer Using Municipal Solid Waste Incineration Bottom Ash and Blast Furnace Slag - Liu Qiong, Wang Qiming, Sun Chang, Singh Amardeep et al. (2025-04)
Compressive Performance and Damage Evolution of Concrete Short Columns with Shell-Filling Structure Confined by Continuous Fiber Reinforced 3D Printed Mortar - Zhang Yuying, Zhu Xiaohong, Li Muduo, Zhang Chao et al. (2025-04)
3D Printing Technology in Concrete Construction - Gulati Hemant, Lu Tianxing (2025-03)
Customized 3D Printable Concrete:
A Systematic Review of Challenges, Methodologies, and Adoption Strategies - Chen Wenguang, Liang Long, Zhou Boyang, Ye Junhong et al. (2025-02)
A Fracture Mechanics Model for Predicting Tensile Strength and Fracture Toughness of 3D Printed Engineered Cementitious Composites - Rudziewicz Magdalena, Maroszek Marcin, Hutyra Adam, Góra Michał et al. (2025-02)
Influence of Foaming Agents and Stabilizers on Porosity in 3D Printed Foamed Concrete - Liu Xinhao, Hu Jiajun, Guo Xiaolu (2025-01)
Improved Interlayer-Bonding of 3D Printed Fiber-Reinforced Geopolymer by Healing-Agents:
Properties, Mechanism, and Environmental Impacts - Li Leo, Zhang Guang-Hu, Kwan Albert (2025-01)
Exploring Submarine 3D Printing:
Enhancing Washout-Resistance and Strength of 3D Printable Mortar - Kopitha Kirushnapillai, Rajeev Pathmanathan, Sanjayan Jay, Elakneswaran Yogarajah (2024-12)
CO2 Sequestration and Low-Carbon-Strategies in 3D Printed Concrete - Silvestro Laura, Ribeiro Rodrigo, Navarrete Iván (2024-12)
Advancements in Low Carbon-Emission Cements for 3D Printing:
A State-of-the-Art Review - Sousa Israel, Alessandro Antonella, Mesquita Esequiel, Laflamme Simon et al. (2024-11)
Comprehensive Review of 3D Printed Cementitious Composites with Carbon Inclusions:
Current Status and Perspective for Self-Sensing Capabilities - Cai Jianguo, Wang Jingsong, Zhang Qian, Du Caixia et al. (2024-10)
State of the Art of Mechanical Properties of 3D Printed Concrete - Over Derya, Ozbakan Nesil, Bustani Mehmet, Karali Bulut (2024-10)
An Investigation of Rheological Properties and Sustainability of Various 3D Printing Concrete Mixtures with Alternative Binders and Rheological Modifiers - Han Kang, Gu Fei, Yang Huashan, Tian Xinchen et al. (2024-09)
PVA-Fiber-Reinforced Red Mud-Based Geopolymer for 3D Printing:
Printability, Mechanical Properties and Microanalysis - Robayo-Salazar Rafael, Muñoz Miguel, Vargas Armando, Gutiérrez Ruby (2024-08)
Effects of Incorporating Bentonite, Metakaolin, Microsilica, and Calcium-Carbonate on the Rheological Properties of Portland-Cement-Based 3D Printing Inks - Hanratty Niall, Khan Mehran, McNally Ciaran (2024-07)
The Role of Different Clay Types in Achieving Low-Carbon 3D Printed Concretes - Shoaei Parham, Gallantree-Smith Harrison, Martínez Pacheco Victor, Pamies Ramón et al. (2024-06)
Comparative Analysis of 3D Printing of Portland Cement Mortars with Hydroxypropyl-Methylcellulose and Micro-Fibrillated Cellulose as Viscosity-Modifying-Agents - Aslani Farhad, Zhang Yifan (2024-06)
Sustainable 3D Printed Concrete Structures Using High-Quality Secondary Raw Materials - González-Fonteboa Belén, Seara-Paz Sindy, Caneda-Martínez Laura (2024-06)
3D Printing Concrete with Byproducts - Mathew Ashitta, Philip Nivin, Jędrzejewska Agnieszka (2024-05)
Enhancing Sustainability and Performance of 3D Printing Mortar with Alccofine 1203, GGBS, and Kaolin:
Experimental Investigation and Mechanical Characterization - Los Angeles Ortega Rosario Maria, Medina Melany, Duque Rafael, Alberto Jaén Ortega Antonio et al. (2024-05)
Advancing Sustainable Construction:
Insights into Clay-Based Additive Manufacturing for Architecture, Engineering, and Construction - Khan Mehran, McNally Ciaran (2024-05)
Recent Developments on Low-Carbon 3D Printing Concrete:
Revolutionizing Construction Through Innovative Technology - Wang Jun, Liu Zhenhua, Hou Jia, Ge Mengmeng (2024-04)
Research-Progress and Trend-Analysis of Concrete 3D Printing Technology Based on CiteSpace - Soda Prabhath, Dwivedi Ashutosh, Sahana C., Gupta Souradeep (2024-03)
Development of 3D Printable Stabilized Earth-Based Construction Materials Using Excavated Soil:
Evaluation of Fresh and Hardened Properties - Moghayedi Alireza, Mahachi Jeffrey, Lediga Refilwe, Mosiea Tshepang et al. (2024-03)
Revolutionizing Affordable Housing in Africa:
A Comprehensive Technical and Sustainability Study of 3D Printing Technology - Eugenin Claudia, Cuevas Villalobos Karla, Navarrete Iván (2023-12)
Temperature-Dependance of 3D Printed Concrete Produced with Copper-Tailings - Warsi Syed, Srinivas Dodda, Panda Biranchi, Biswas Pankaj (2023-12)
Investigating the Impact of Coarse Aggregate Dosage on the Mechanical Performance of 3D Printable Concrete - Ambily Parukutty, Rajendran Neeraja, Kaliyavaradhan Senthil (2023-11)
Mix-Design, Optimization and Performance-Evaluation of Extrusion-Based 3D Printable Concrete - Shahmirzadi Mohsen, Gholampour Aliakbar, Kashani Alireza, Ngo Tuan (2023-10)
Geopolymer Mortars for Use in Construction 3D Printing:
Effect of LSS, Graphene-Oxide and Nano-Clay at Different Environmental Conditions - Chen Yuning, Xia Kailun, Jia Zijian, Gao Yueyi et al. (2023-10)
Extending Applicability of 3D Printable Geopolymer to Large-Scale Printing Scenario via Combination of Sodium Carbonate and Nano-Silica - Kurniati Eka, Kim Heejeong (2023-10)
Utilizing Industrial Byproducts for Sustainable Three-Dimensional-Printed Infrastructure Applications:
A Comprehensive Review - Bayat Hamid, Kashani Alireza (2023-09)
Analysis of Rheological Properties and Printability of a 3D Printing Mortar Containing Silica-Fume, Hydrated Lime, and Blast-Furnace-Slag - Liu Yi, Wang Li, Yuan Qiang, Peng Jianwei (2023-09)
Effect of Coarse Aggregate on Printability and Mechanical Properties of 3D Printed Concrete - Yin Yunchao, Huang Jian, Wang Tiezhu, Yang Rong et al. (2023-09)
Effect of Hydroxypropyl-Methylcellulose on Rheology and Printability of the First Printed Layer of Cement Activated Slag-Based 3D Printing Concrete - Paritala Spandana, Singaram Kailash, Bathina Indira, Khan Mohd et al. (2023-08)
Rheology and Pumpability of Mix Suitable for Extrusion-Based Concrete 3D Printing:
A Review - Shilar Fatheali, Ganachari Sharanabasava, Patil Veerabhadragouda, Bhojaraja B. et al. (2023-08)
A Review of 3D Printing of Geopolymer Composites for Structural and Functional Applications - Núñez Varillas Christoper, Regalado Espinoza Marck, Gago Gamboa Angela (2023-07)
3D Printing:
An Opportunity for the Sustainable Development of Building Construction - Riaz Raja, Usman Muhammad, Ali Ammar, Majid Usama et al. (2023-06)
Inclusive Characterization of 3D Printed Concrete in Additive Manufacturing:
A Detailed Review - Zhang Daobo, Feng Peng, Zhou Peizhao, Xu Weiguo et al. (2023-06)
3D Printed Concrete Walls Reinforced with Flexible FRP Textile:
Automatic Construction, Digital Rebuilding, and Seismic Performance - Ali Ammar, Riaz Raja, Malik Umair, Abbas Syed et al. (2023-06)
Machine-Learning-Based Predictive-Model for Tensile and Flexural Strength of 3D Printed Concrete - Lyu Qifeng, Dai Pengfei, Chen Anguo (2023-05)
Sandwich-Structured Porous Concrete Manufactured by Mortar-Extrusion and Aggregate-Bed 3D Printing - Samudrala Manideep, Mujeeb Syed, Lanjewar Bhagyashri, Chippagiri Ravijanya et al. (2023-05)
3D Printable Concrete for Energy-Efficient Buildings - Nodehi Mehrab, Omer Liam, Asiabanpour Bahram, Ozbakkaloglu Togay (2023-04)
A Novel Lightweight Mechanism for 3D Printing of Cementitious Materials - Robayo-Salazar Rafael, Gutiérrez Ruby, Villaquirán-Caicedo Mónica, Delvasto Arjona Silvio (2022-12)
3D Printing with Cementitious Materials:
Challenges and Opportunities for the Construction Sector - Zhou Yiyi, Jiang Dan, Sharma Rahul, Xie Yi et al. (2022-11)
Enhancement of 3D Printed Cementitious Composite by Short Fibers:
A Review - Melichar Jindřich, Žižková Nikol, Brožovský Jiří, Mészárosová Lenka et al. (2022-11)
Study of the Interaction of Cement-Based Materials for 3D Printing with Fly-Ash and Superabsorbent Polymers
BibTeX
@article{node_ozba_ghol.2022.EoSCMoPo3PCaAAC,
author = "Mehrab Nodehi and Togay Ozbakkaloglu and Aliakbar Gholampour",
title = "Effect of Supplementary Cementitious Materials on Properties of 3D Printed Conventional and Alkali-Activated Concrete: A Review",
doi = "10.1016/j.autcon.2022.104215",
year = "2022",
journal = "Automation in Construction",
volume = "138",
}
Formatted Citation
M. Nodehi, T. Ozbakkaloglu and A. Gholampour, “Effect of Supplementary Cementitious Materials on Properties of 3D Printed Conventional and Alkali-Activated Concrete: A Review”, Automation in Construction, vol. 138, 2022, doi: 10.1016/j.autcon.2022.104215.
Nodehi, Mehrab, Togay Ozbakkaloglu, and Aliakbar Gholampour. “Effect of Supplementary Cementitious Materials on Properties of 3D Printed Conventional and Alkali-Activated Concrete: A Review”. Automation in Construction 138 (2022). https://doi.org/10.1016/j.autcon.2022.104215.