Skip to content

Direct Printing-Test for Buildability of 3D Printable Concrete Considering Economic Viability (2019-11)

10.1016/j.autcon.2019.102986

 Nerella Venkatesh, Krause Martin,  Mechtcherine Viktor
Journal Article - Automation in Construction, Vol. 109

Abstract

Buildability, i.e. the ability of a deposited material bulk to retain its dimensions under increasing load, is an inherent prerequisite for formwork-free digital concrete construction (DC). Since DC processes are relatively new, no standard methods of characterization are available yet. The paper presents direct printing test as a practice-oriented approach, in which buildability test parameters are determined by taking various process aspects and construction costs into consideration. In doing so, direct links between laboratory buildability tests and target applications are established. A systematic basis for calculating the time interval (TI) to be followed during laboratory testing is proposed for the full-width printing (FWP) and filament printing (FP) processes. The proposed approach is verified by applying it to a high-strength, printable, fine-grained concrete. Comparative analyses of FWP and FP revealed that to test the buildability of a material for FP processes, higher velocities of the printhead should be established for laboratory tests in comparison to those needed for FWP process, providing for equal construction rates.

38 References

  1. Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
    Additive Manufacturing of Concrete in Construction:
    Potentials and Challenges of 3D Concrete Printing
  2. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  3. Buswell Richard, Soar Rupert, Gibb Alistar, Thorpe Tony (2006-06)
    Freeform Construction:
    Mega-Scale Rapid Manufacturing for Construction
  4. Buswell Richard, Thorpe Tony, Soar Rupert, Gibb Alistar (2008-05)
    Design, Data and Process Issues for Mega-Scale Rapid Manufacturing Machines Used for Construction
  5. Cesaretti Giovanni, Dini Enrico, Kestelier Xavier, Colla Valentina et al. (2013-08)
    Building Components for an Outpost on the Lunar Soil by Means of a Novel 3D Printing Technology
  6. Chen Yu, Çopuroğlu Oğuzhan, Veer Frederic (2018-01)
    A Critical Review of 3D Concrete Printing as a Low-CO2 Concrete Approach
  7. Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
    Large-Scale 3D Printing of Ultra-High-Performance Concrete:
    A New Processing Route for Architects and Builders
  8. Hwang Dooil, Khoshnevis Behrokh (2004-09)
    Concrete Wall Fabrication by Contour Crafting
  9. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  10. Khoshnevis Behrokh (2003-11)
    Automated Construction by Contour Crafting:
    Related Robotics and Information Technologies
  11. Labonnote Nathalie, Rønnquist Anders, Manum Bendik, Rüther Petra (2016-09)
    Additive Construction:
    State of the Art, Challenges and Opportunities
  12. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  13. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  14. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  15. Lim Sungwoo, Buswell Richard, Valentine Philip, Piker Daniel et al. (2016-06)
    Modelling Curved-Layered Printing Paths for Fabricating Large-Scale Construction Components
  16. Lloret-Fritschi Ena, Shahab Amir, Linus Mettler, Flatt Robert et al. (2014-03)
    Complex Concrete Structures:
    Merging Existing Casting Techniques with Digital Fabrication
  17. Lowke Dirk, Dini Enrico, Perrot Arnaud, Weger Daniel et al. (2018-07)
    Particle-Bed 3D Printing in Concrete Construction:
    Possibilities and Challenges
  18. Marchon Delphine, Kawashima Shiho, Bessaies-Bey Hela, Mantellato Sara et al. (2018-05)
    Hydration- and Rheology-Control of Concrete for Digital Fabrication:
    Potential Admixtures and Cement-Chemistry
  19. Mechtcherine Viktor, Nerella Venkatesh, Kasten Knut (2013-12)
    Testing Pumpability of Concrete Using Sliding-Pipe Rheometer
  20. Mechtcherine Viktor, Nerella Venkatesh, Will Frank, Näther Mathias et al. (2019-08)
    Large-Scale Digital Concrete Construction:
    CONPrint3D Concept for On-Site, Monolithic 3D Printing
  21. Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
    Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing
  22. Nerella Venkatesh, Näther Mathias, Iqbal Arsalan, Butler Marko et al. (2018-09)
    In-Line Quantification of Extrudability of Cementitious Materials for Digital Construction
  23. Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
    Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar
  24. Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
    Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material
  25. Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
    Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques
  26. Pierre Alexandre, Weger Daniel, Perrot Arnaud, Lowke Dirk (2018-01)
    Penetration of Cement-Pastes into Sand-Packings During 3D Printing:
    Analytical and Experimental Study
  27. Reiter Lex, Wangler Timothy, Roussel Nicolas, Flatt Robert (2018-06)
    The Role of Early-Age Structural Build-Up in Digital Fabrication with Concrete
  28. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  29. Schröfl Christof, Nerella Venkatesh, Mechtcherine Viktor (2018-09)
    Capillary Water Intake by 3D Printed Concrete Visualised and Quantified by Neutron Radiography
  30. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  31. Soto Borja, Agustí-Juan Isolda, Hunhevicz Jens, Joss Samuel et al. (2018-05)
    Productivity of Digital Fabrication in Construction:
    Cost and Time-Analysis of a Robotically Built Wall
  32. Suiker Akke (2018-01)
    Mechanical Performance of Wall Structures in 3D Printing Processes:
    Theory, Design Tools and Experiments
  33. Tay Yi, Ting Guan, Qian Ye, Panda Biranchi et al. (2018-07)
    Time-Gap-Effect on Bond Strength of 3D Printed Concrete
  34. Wangler Timothy, Lloret-Fritschi Ena, Reiter Lex, Hack Norman et al. (2016-10)
    Digital Concrete:
    Opportunities and Challenges
  35. Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
    Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model
  36. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  37. Wu Peng, Wang Jun, Wang Xiangyu (2016-04)
    A Critical Review of the Use of 3D Printing in the Construction Industry
  38. Zhang Jing, Khoshnevis Behrokh (2012-09)
    Optimal Machine Operation Planning for Construction by Contour Crafting

103 Citations

  1. Kaushik Sandipan, Sonebi Mohammed, Amato Giuseppina, Perrot Arnaud (2026-01)
    Effect of Fly Ash, Basalt Fiber and Attapulgite Nanoclay on the Fresh Properties, Rheology and Shrinkage Behaviour of Printable Concrete
  2. Tulliani Jean-Marc (2025-11)
    Latest Developments in 3D-Printed Engineered Cementitious Composites:
    Technologies, Prospects, and Challenges
  3. Abedi Mohammadmadhi, Waris Muhammad, Alawi Mubarak, Jabri Khalifa et al. (2025-11)
    Data-Driven Design of Sustainable LC³ for 3D Printing with Omani Clays
  4. Kua Harn, Shi A., Kajandran V., Lam T. et al. (2025-09)
    Toward Sustainable Construction 3D Printing:
    Limestone and Non-Calcined Recycled Marine Clay as Partial Cement Replacement
  5. Yang Shuai, Li Fei, Lu Ya, Xu Xiaoming et al. (2025-08)
    Study of the Printing Characteristics of a 3D Printing Solution for the Purpose of Process Optimization
  6. Aydin Tolga, Sandalci Ilgin, Aydin Eylül, Kara Burhan et al. (2025-08)
    Investigation of Bacterial Cells and Clays as Rheology Modifiers in 3D Concrete Printing
  7. Chen Baixi, Qian Xiaoping (2025-07)
    Explainable Data-Driven Analysis of Uncertainty Propagation in 3D Concrete Printing via Adaptive Polynomial Chaos Expansion
  8. Zhang Ruo-Chen, Li Jiaxing, Liu Yiran, Huang Yimiao et al. (2025-06)
    Self-Healing Approach for Micro-Defects in 3D Printed Concrete:
    Microbial Community
  9. Mishra Sanjeet, Snehal K., Das B., Chandrasekaran Rajasekaran et al. (2025-05)
    From Printing to Performance:
    A Review on 3D Concrete Printing Processes, Materials, and Life Cycle Assessment
  10. Xiong Baocheng, Liu Huanbao, Nie Ping, Li Xiaoxi et al. (2025-04)
    Effect of Different Surface Modification Methods of Small Particle Size Recycled Rubber Powder on Mechanical Properties of 3D Printed Concrete
  11. Yassin Ahmed, Hafez Mohamed, Aboelhassan Mohamed (2025-04)
    Experimental and Numerical Investigation on the Effect of Different Types of Synthetic Fibers on the Flexure Behavior and Mechanical Properties of 3D Cementitious Composite Printing Provided with Cement CEM II/A-P
  12. Araújo Rísia, Martinelli Antônio, Cabral Kleber, Nunes Ueslei et al. (2025-03)
    Effect of Lightweight Expanded Clay Aggregate (LECA) On the Printability of Cementitious Compositions for 3D Printing
  13. Park Ji-seul, Jeong Seung-Su, Hong Seungkee, Lee Seohyung et al. (2025-02)
    Mechanical Modeling for Prediction of Structural Stability of Cylindrical Structures During 3D Concrete Printing
  14. Sando Mona, Stephan Dietmar (2025-02)
    The Role of Mixing Sequence in Shaping the 3D-Printability of Geopolymers
  15. Zargar Seyed, Leicht Robert, Wagner Alan, Duarte José et al. (2025-01)
    Beyond Trial and Error:
    Toward Construction-Aware Early Design-Optimization Considering Robotic Capabilities
  16. Abedi Mohammadmadhi, Waris Muhammad, Alawi Mubarak, Jabri Khalifa et al. (2024-12)
    From Local Earth to Modern Structures:
    A Critical Review of 3D Printed Cement Composites for Sustainable and Efficient Construction
  17. Sakhare Vishakha, Najar Mohamed, Deshpande Sachin (2024-12)
    Printing Performance of 3D Printed Geopolymer Through Pumpability, Extrudability, Buildability Properties:
    A Review
  18. Neef Tobias, Mechtcherine Viktor (2024-09)
    Continuous Fiber-Reinforcement for Extrusion-Based 3D Concrete Printing
  19. Prihar Arjun, Gupta Shashank, Esmaeeli Hadi, Moini Mohamadreza (2024-08)
    Tough Double-Bouligand Architected Concrete Enabled by Robotic Additive Manufacturing
  20. Huseien Ghasan, Tan Shea, Saleh Ali, Lim Nor et al. (2024-08)
    Test-Procedures and Mechanical Properties of Three-Dimensional Printable Concrete Enclosing Different Mix-Proportions:
    A Review and Bibliometric Analysis
  21. Xiong Baocheng, Nie Ping, Liu Huanbao, Li Xiaoxi et al. (2024-08)
    Evaluation and Optimization of Micro-Calcium-Carbonate-Modified 3D Printed Rubber-Crumb Concrete
  22. Alonso-Cañon Sara, Blanco-Fernandez Elena, Castro-Fresno Daniel, Yoris-Nobile Adrian et al. (2024-08)
    Comparison of Reinforcement-Fibers in 3D Printing Mortars Using Multi-Criteria Analysis
  23. Şahin Hatice, Mardani Ali, Mardani Naz (2024-07)
    Performance Requirements and Optimum Mix Proportion of High-Volume Fly-Ash 3D Printable Concrete
  24. Gu Yucun, Khayat Kamal (2024-06)
    Effect of Superabsorbent Polymer on 3D Printing Characteristics as Rheology-Modified-Agent
  25. Zhou Zhijie, Geng Jian, Jin Chen, Liu Genjin et al. (2024-06)
    Influence of Residue Soil on the Properties of Fly-Ash-Slag-Based Geopolymer Materials for 3D Printing
  26. Birru Bizu, Rehman Atta, Kim Jung-Hoon (2024-06)
    Comparative Analysis of Structural Build-Up in One-Component Stiff and Two-Component Shotcrete-Accelerated Set-on-Demand Mixtures for 3D Concrete Printing
  27. Razzaghian Ghadikolaee Mehrdad, Pan Zhu, Cerro-Prada Elena, Korayem Asghar (2024-06)
    Fresh and Hardened Properties of 3D Printing Mortar Modified by Halloysite-Nanotube
  28. Gu Yucun, Khayat Kamal (2024-05)
    Extrudability Window and Off-Line Test-Methods to Predict Buildability of 3D Printing Concrete
  29. Bayatkashkooli Samira, Amirsardari Anita, Rajeev Pathmanathan, Sanjayan Jay et al. (2024-05)
    Investigation of Axial Load Capacity of 3D Printed Concrete Wall
  30. Khan Mehran, McNally Ciaran (2024-05)
    Recent Developments on Low-Carbon 3D Printing Concrete:
    Revolutionizing Construction Through Innovative Technology
  31. Dvorkin Leonid, Marchuk Vitaliy, Mróz Katarzyna, Maroszek Marcin et al. (2024-04)
    Energy-Efficient Mixtures Suitable for 3D Technologies
  32. Kompella Sriram, Marcucci Andrea, Monte Francesco, Levi Marinella et al. (2024-04)
    Fracture Behavior of Three-Dimensional-Printable Cementitious Mortars in Very Early-Ages and Hardened States
  33. Rangel Carolina, Guimarães Ana, Salet Theo, Lucas Sandra (2024-03)
    3D Printing Lightweight Mortars with Cork to Improve Thermal Efficiency in Buildings
  34. Xiong Baocheng, Nie Ping, Liu Huanbao, Li Xiaoxi et al. (2024-03)
    Optimization of Fiber-Reinforced Lightweight Rubber-Concrete Mix-Design for 3D Printing
  35. Vaněk Vojtěch, Chomová Štěpánka, Pěnčík Jan (2024-01)
    Additive Technologies in Construction:
    Shifting the Paradigm of Building
  36. Bono Victor, Ducoulombier Nicolas, Mesnil Romain, Caron Jean-François (2023-12)
    Methodology for Formulating Low-Carbon Printable Mortar Through Particles-Packing-Optimization
  37. Dey Dhrutiman, Nguyen Vuong, Nguyen-Xuan Hung, Srinivas Dodda et al. (2023-12)
    Flexural Performance of 3D Printed Concrete Structure with Lattice-Infills
  38. Felfili Guimarães Gabriela, Oliveira Marcos, Almeida Martinelli Juliana (2023-12)
    Performance-Evaluation of the 3D Printing System Through Fault-Tree-Analysis-Method
  39. An Dong, Zhang Yixia, Yang Chunhui (2023-11)
    Numerical Modelling of 3D Concrete Printing:
    Material-Models, Boundary-Conditions and Failure-Identification
  40. Shahmirzadi Mohsen, Gholampour Aliakbar, Kashani Alireza, Ngo Tuan (2023-10)
    Geopolymer Mortars for Use in Construction 3D Printing:
    Effect of LSS, Graphene-Oxide and Nano-Clay at Different Environmental Conditions
  41. Thib Raghed, Belayachi Naima, Bouarroudj Mohamed, Bulteel David et al. (2023-10)
    A Methodology for Designing 3D Printable Mortar Based on Recycled Sand
  42. Zafar Muhammad, Bakhshi Amir, Hojati Maryam (2023-10)
    Printability and Shape Fidelity Evaluation of Self-Reinforced Engineered Cementitious Composites
  43. Chang Ze, Chen Yu, Schlangen Erik, Šavija Branko (2023-09)
    A Review of Methods on Buildability Quantification of Extrusion-Based 3D Concrete Printing:
    From Analytical Modelling to Numerical Simulation
  44. Liu Zhenbang, Li Mingyang, Quah Tan, Wong Teck et al. (2023-09)
    Comprehensive Investigations on the Relationship Between the 3D Concrete Printing Failure Criterion and Properties of Fresh-State Cementitious Materials
  45. Tu Haidong, Wei Zhenyun, Bahrami Alireza, Kahla Nabil et al. (2023-06)
    Recent Advancements and Future Trends in 3D Printing Concrete Using Waste-Materials
  46. Riaz Raja, Usman Muhammad, Ali Ammar, Majid Usama et al. (2023-06)
    Inclusive Characterization of 3D Printed Concrete in Additive Manufacturing:
    A Detailed Review
  47. Deng Qi, Zou Shuai, Xi Yonghui, Singh Amardeep (2023-06)
    Development and Characteristic of 3D Printable Mortar with Waste-Glass-Powder
  48. Bhushan Jindal Bharat, Jangra Parveen (2023-05)
    3D Printed Concrete:
    A Comprehensive Review of Raw Material’s Properties, Synthesis, Performance, and Potential Field Applications
  49. Dias Bruno, Rocha Douglas, Faria Paulina, Lucas Sandra et al. (2023-04)
    Limes with Hydraulic Properties for 3D Printing Mortars
  50. Ekanayaka Virama, Hürkamp André (2023-03)
    Implementation of a Surrogate-Model for a Novel Path‐Based Finite-Element-Simulation for Additive Manufacturing-Processes in Construction
  51. Anleu Paula, Wangler Timothy, Nerella Venkatesh, Mechtcherine Viktor et al. (2023-03)
    Using Micro-XRF to Characterize Chloride-Ingress Through Cold Joints in 3D Printed Concrete
  52. Tao Yaxin, Ren Qiang, Vantyghem Gieljan, Lesage Karel et al. (2023-02)
    Extending 3D Concrete Printing to Hard Rock Tunnel Linings:
    Adhesion of Fresh Cementitious Materials for Different Surface Inclinations
  53. Şahin Hatice, Mardani Ali (2023-02)
    Mechanical Properties, Durability Performance and Inter-Layer Adhesion of 3DPC Mixtures:
    A State‐of‐the‐art Review
  54. Chang Ze, Liang Minfei, Xu Yading, Wan Zhi et al. (2023-02)
    Early-Age Creep of 3D Printable Mortar:
    Experiments and Analytical Modelling
  55. Ahmed Ghafur (2023-01)
    A Review of 3D Concrete Printing:
    Materials and Process Characterization, Economic Considerations and Environmental Sustainability
  56. Yang Liming, Sepasgozar Samad, Shirowzhan Sara, Kashani Alireza et al. (2022-12)
    Nozzle Criteria for Enhancing Extrudability, Buildability and Inter-Layer Bonding in 3D Printing Concrete
  57. Alonso-Cañon Sara, Blanco-Fernandez Elena, Castro-Fresno Daniel, Yoris-Nobile Adrian et al. (2022-11)
    Reinforcements in 3D Printing Concrete Structures
  58. Qaidi Shaker, Yahia Ammar, Tayeh B., Unis H. et al. (2022-10)
    3D Printed Geopolymer Composites:
    A Review
  59. Ivanova Irina, Mechtcherine Viktor, Reißig Silvia (2022-09)
    Vergleich von Bewertungsmethoden für die rheologischen Eigenschaften von frisch gedrucktem Beton
  60. Zhou Wen, McGee Wesley, Zhu He, Gökçe H. et al. (2022-08)
    Time-Dependent Fresh Properties Characterization of 3D Printing Engineered Cementitious Composites:
    On the Evaluation of Buildability
  61. Chang Ze, Zhang Hongzhi, Liang Minfei, Schlangen Erik et al. (2022-07)
    Numerical Simulation of Elastic Buckling in 3D Concrete Printing Using the Lattice-Model with Geometric Non-Linearity
  62. Ahmed Ghafur, Askandar Nasih, Jumaa Ghazi (2022-07)
    A Review of Large-Scale 3DCP:
    Material-Characteristics, Mix-Design, Printing-Process, and Reinforcement-Strategies
  63. Ekanayaka Virama, Lachmayer Lukas, Raatz Annika, Hürkamp André (2022-06)
    Approach to Optimize the Inter-Layer Waiting Time in Additive Manufacturing with Concrete Utilizing FEM Modeling
  64. Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-06)
    Hardened Properties of 3D Printed Concrete with Recycled Coarse Aggregate
  65. Bhattacherjee Shantanu, Jain Smrati, Santhanam Manu (2022-06)
    Criticality of Microstructural Evolution at an Early-Age on the Buildability of an Accelerated 3D Printable Concrete
  66. Flatt Robert, Wangler Timothy (2022-05)
    On Sustainability and Digital Fabrication with Concrete
  67. Moini Mohamadreza, Olek Jan, Zavattieri Pablo, Youngblood Jeffrey (2022-04)
    Early-Age Buildability-Rheological Properties Relationship in Additively Manufactured Cement-Paste Hollow Cylinders
  68. Cao Xiangpeng, Yu Shiheng, Cui Hongzhi, Li Zongjin (2022-04)
    3D Printing Devices and Reinforcing Techniques for Extruded Cement-Based Materials:
    A Review
  69. Bhattacherjee Shantanu, Santhanam Manu (2022-04)
    Investigation on the Effect of Alkali-Free Aluminium Sulfate-Based Accelerator on the Fresh Properties of 3D Printable Concrete
  70. Pan Tinghong, Teng Huaijin, Liao Hengcheng, Jiang Yaqing et al. (2022-03)
    Effect of Shaping Plate Apparatus on Mechanical Properties of 3D Printed Cement-Based Materials:
    Experimental and Numerical Studies
  71. Nguyen Vuong, Nguyen-Xuan Hung, Panda Biranchi, Tran Jonathan (2022-03)
    3D Concrete Printing Modelling of Thin-Walled Structures
  72. Ivanova Irina, Ivaniuk Egor, Bisetti Sameercharan, Nerella Venkatesh et al. (2022-03)
    Comparison Between Methods for Indirect Assessment of Buildability in Fresh 3D Printed Mortar and Concrete
  73. Yang Yekai, Wu Chengqing, Liu Zhongxian, Li Jun et al. (2022-02)
    Characteristics of 3D Printing Ultra-High-Performance Fiber-Reinforced Concrete Under Impact Loading
  74. Shao Lijing, Feng Pan, Zuo Wenqiang, Wang Haochuan et al. (2022-02)
    A Novel Method for Improving the Printability of Cement-Based Materials:
    Controlling the Releasing of Capsules Containing Chemical Admixtures
  75. Guamán-Rivera Robert, Martínez-Rocamora Alejandro, García-Alvarado Rodrigo, Muñoz-Sanguinetti Claudia et al. (2022-02)
    Recent Developments and Challenges of 3D Printed Construction:
    A Review of Research Fronts
  76. Ji Guangchao, Xiao Jianzhuang, Zhi Peng, Wu Yuching et al. (2022-02)
    Effects of Extrusion-Parameters on Properties of 3D Printing Concrete with Coarse Aggregates
  77. Pasco Jubert, Lei Zhen, Aranas Clodualdo (2022-01)
    Additive Manufacturing in Off-Site Construction:
    Review and Future Directions
  78. Batikha Mustafa, Jotangia Rahul, Baaj Mohamad, Mousleh Ibrahim (2021-12)
    3D Concrete Printing for Sustainable and Economical Construction:
    A Comparative Study
  79. Kilic Ugur, Yang Yang, Ma Ji, Ozbulut Osman (2021-12)
    Rheological and Thermal Characterization of 3D Printable Lightweight Cementitious Composites with Fly-Ash-Cenospheres
  80. Moini Mohamadreza, Olek Jan, Zavattieri Pablo, Youngblood Jeffrey (2021-12)
    Open-Span Printing Method for Assessment of Early-Age Deformations of Additively Manufactured Cement-Based Materials Using an Isosceles Triangle
  81. Şahin Hatice, Mardani Ali (2021-12)
    Assessment of Materials, Design Parameters and Some Properties of 3D Printing Concrete Mixtures:
    A State of the Art Review
  82. Weger Daniel, Stengel Thorsten, Gehlen Christoph, Maciejewski Yannick et al. (2021-12)
    Approval for the Construction of the First 3D Printed Detached House in Germany:
    Significance of Large-Scale Element Testing
  83. Lachmayer Lukas, Ekanayaka Virama, Hürkamp André, Raatz Annika (2021-11)
    Approach to an Optimized Printing Path for Additive Manufacturing in Construction Utilizing FEM Modeling
  84. Chen Yu, He Shan, Gan Yidong, Çopuroğlu Oğuzhan et al. (2021-11)
    A Review of Printing-Strategies, Sustainable Cementitious Materials and Characterization Methods in the Context of Extrusion-Based 3D Concrete Printing
  85. Douba AlaEddin, Kawashima Shiho (2021-11)
    Use of Nano-Clays and Methylcellulose to Tailor Rheology for Three-Dimensional Concrete Printing
  86. Wang Yu, Jiang Yaqing, Pan Tinghong, Yin Kangting (2021-08)
    The Synergistic Effect of Ester-Ether Copolymerization Thixo-Tropic Superplasticizer and Nano-Clay on the Buildability of 3D Printable Cementitious Materials
  87. Chen Yu, He Shan, Zhang Yu, Wan Zhi et al. (2021-08)
    3D Printing of Calcined-Clay-Limestone-Based Cementitious Materials
  88. Wang Li, Ma Hui, Li Zhijian, Ma Guowei et al. (2021-07)
    Cementitious Composites Blending with High Belite-Sulfoaluminate and Medium-Heat Portland Cements for Large-Scale 3D Printing
  89. Rehman Atta, Kim Jung-Hoon (2021-07)
    3D Concrete Printing:
    A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics
  90. Bhattacherjee Shantanu, Basavaraj Anusha, Rahul Attupurathu, Santhanam Manu et al. (2021-06)
    Sustainable Materials for 3D Concrete Printing
  91. Sun Junbo, Aslani Farhad, Lu Jenny, Wang Lining et al. (2021-06)
    Fiber-Reinforced Lightweight Engineered Cementitious Composites for 3D Concrete Printing
  92. Markin Slava, Krause Martin, Otto Jens, Schröfl Christof et al. (2021-06)
    3D Printing with Foam-Concrete:
    From Material Design and Testing to Application and Sustainability
  93. Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
    Large-Scale 3D Printing Concrete Technology:
    Current Status and Future Opportunities
  94. Bos Freek, Kruger Jacques, Lucas Sandra, Zijl Gideon (2021-04)
    Juxtaposing Fresh Material-Characterisation-Methods for Buildability-Assessment of 3D Printable Cementitious Mortars
  95. Pessoa Ana Sofia, Guimarães Ana, Lucas Sandra, Simões Nuno (2021-02)
    3D Printing in the Construction Industry:
    A Systematic Review of the Thermal Performance in Buildings
  96. Weger Daniel, Pierre Alexandre, Perrot Arnaud, Kränkel Thomas et al. (2021-01)
    Penetration of Cement-Pastes into Particle-Beds:
    A Comparison of Penetration Models
  97. Singh P., Sreerag K. (2020-12)
    Additive Manufacturing Through Digital Concrete by Extrusion- and Non-Extrusion-Method
  98. Kruger Jacques, Zijl Gideon (2020-10)
    A Compendious Review on Lack-of-Fusion in Digital Concrete Fabrication
  99. Geng Zifan, She Wei, Zuo Wenqiang, Lyu Kai et al. (2020-09)
    Layer-Interface Properties in 3D Printed Concrete:
    Dual Hierarchical Structure and Micromechanical Characterization
  100. Bhattacherjee Shantanu, Santhanam Manu (2020-07)
    Enhancing Buildability of 3D Printable Concrete by Spraying of Accelerating-Admixture on Surface
  101. Prasittisopin Lapyote, Pongpaisanseree Kittisak, Jiramarootapong Patiphat, Snguanyat Chalermwut (2020-07)
    Thermal- and Sound-Insulation of Large-Scale 3D Extrusion-Printing Wall-Panel
  102. Westerlind Helena, Vargas José (2020-07)
    Knitting Concrete
  103. Chen Yu, Rodríguez Claudia, Li Zhenming, Chen Boyu et al. (2020-07)
    Effect of Different Grade Levels of Calcined Clays on Fresh and Hardened Properties of Ternary-Blended Cementitious Materials for 3D Printing

BibTeX
@article{nere_krau_mech.2020.DPTfBo3PCCEV,
  author            = "Venkatesh Naidu Nerella and Martin Krause and Viktor Mechtcherine",
  title             = "Direct Printing-Test for Buildability of 3D Printable Concrete Considering Economic Viability",
  doi               = "10.1016/j.autcon.2019.102986",
  year              = "2020",
  journal           = "Automation in Construction",
  volume            = "109",
}
Formatted Citation

V. N. Nerella, M. Krause and V. Mechtcherine, “Direct Printing-Test for Buildability of 3D Printable Concrete Considering Economic Viability”, Automation in Construction, vol. 109, 2020, doi: 10.1016/j.autcon.2019.102986.

Nerella, Venkatesh Naidu, Martin Krause, and Viktor Mechtcherine. “Direct Printing-Test for Buildability of 3D Printable Concrete Considering Economic Viability”. Automation in Construction 109 (2020). https://doi.org/10.1016/j.autcon.2019.102986.