Skip to content

Comparison Between Methods for Indirect Assessment of Buildability in Fresh 3D Printed Mortar and Concrete (2022-03)

10.1016/j.cemconres.2022.106764

 Ivanova Irina,  Ivaniuk Egor, Bisetti Sameercharan,  Nerella Venkatesh,  Mechtcherine Viktor
Journal Article - Cement and Concrete Research, Vol. 156

Abstract

This paper presents a comparison between indirect methods for assessing the buildability of 3D printed cementitious materials, including constant rotational velocity (CRV) or constant shear rate (CSR) test using rotational rheometry, unconfined uniaxial compression test (UUCT), a newly proposed confined uniaxial compression test (CUCT), and fast penetration test. The experimental program was conducted on the extruded samples of six printable mortars and two printable concretes with various rheological behavior achieved by the use of different additives and admixtures. Predictions of the material failure and the stability failure in hollow cylindrical structures are provided and compared with the results of the direct printing test. Benefits and disadvantages of the employed test methods are discussed, also taking into consideration a perspective of their use for automated in-situ control of the materials' buildability

40 References

  1. Arunothayan Arun, Nematollahi Behzad, Sanjayan Jay, Ranade Ravi et al. (2020-07)
    Quantitative Evaluation of Orientation of Steel-Fibers in 3D Printed Ultra-High-Performance Concrete
  2. Benamara Abdeslam, Pierre Alexandre, Kaci Abdelhak, Mélinge Yannick (2020-07)
    3D Printing of a Cement-Based Mortar in a Complex Fluid Suspension:
    Analytical Modeling and Experimental Tests
  3. Bos Freek, Kruger Jacques, Lucas Sandra, Zijl Gideon (2021-04)
    Juxtaposing Fresh Material-Characterisation-Methods for Buildability-Assessment of 3D Printable Cementitious Mortars
  4. Buswell Richard, Silva Wilson, Bos Freek, Schipper Roel et al. (2020-05)
    A Process Classification Framework for Defining and Describing Digital Fabrication with Concrete
  5. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  6. Casagrande Lorenzo, Esposito Laura, Menna Costantino, Asprone Domenico et al. (2020-02)
    Effect of Testing Procedures on Buildability Properties of 3D Printable Concrete
  7. Casagrande Lorenzo, Esposito Laura, Menna Costantino, Asprone Domenico et al. (2020-07)
    Mechanical Characterization of Cement-Based Mortar Used in 3DCP Including Early-Age Creep Effects
  8. Cho Seung, Kruger Jacques, Bester Frederick, Heever Marchant et al. (2020-07)
    A Compendious Rheo-Mechanical Test for Printability-Assessment of 3D Printable Concrete
  9. Hambach Manuel, Volkmer Dirk (2017-02)
    Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste
  10. Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
    A Review of 3D Printed Concrete:
    Performance-Requirements, Testing Measurements and Mix-Design
  11. Ivanova Irina, Mechtcherine Viktor (2020-01)
    Possibilities and Challenges of Constant Shear-Rate-Test for Evaluation of Structural Build-Up-Rate of Cementitious Materials
  12. Jacquet Yohan, Picandet Vincent, Rangeard Damien, Perrot Arnaud (2020-07)
    Gravity-Driven Tests to Assess Mechanical Properties of Printable Cement-Based Materials at Fresh State
  13. Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2020-01)
    Yield-Stress-Criteria to Assess the Buildability of 3D Concrete Printing
  14. Joh Changbin, Lee Jungwoo, Bui The, Park Jihun et al. (2020-11)
    Buildability and Mechanical Properties of 3D Printed Concrete
  15. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  16. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-09)
    Quantifying Constructability Performance of 3D Concrete Printing via Rheology-Based Analytical Models
  17. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2020-04)
    A Rheology-Based Quasi-Static Shape-Retention-Model for Digitally Fabricated Concrete
  18. Kurt Sibel, Atalay Yiğit, Aydın Ozan, Avcıoğlu Berrak et al. (2020-07)
    Design of Energy-Efficient White Portland Cement Mortars for Digital Fabrication
  19. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  20. Li Zhanzhao, Hojati Maryam, Wu Zhengyu, Piasente Jonathon et al. (2020-07)
    Fresh and Hardened Properties of Extrusion-Based 3D Printed Cementitious Materials:
    A Review
  21. Mai (née Dressler) Inka, Freund Niklas, Lowke Dirk (2020-07)
    Control of Strand Properties Produced with Shotcrete 3D Printing by Accelerator Dosage and Process Parameters
  22. Mai (née Dressler) Inka, Freund Niklas, Lowke Dirk (2020-01)
    The Effect of Accelerator Dosage on Fresh Concrete Properties and on Inter-Layer Strength in Shotcrete 3D Printing
  23. Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
    Extrusion-Based Additive Manufacturing with Cement-Based Materials:
    Production Steps, Processes, and Their Underlying Physics
  24. Nerella Venkatesh, Krause Martin, Mechtcherine Viktor (2019-11)
    Direct Printing-Test for Buildability of 3D Printable Concrete Considering Economic Viability
  25. Panda Biranchi, Lim Jian, Tan Ming (2019-02)
    Mechanical Properties and Deformation Behavior of Early-Age Concrete in the Context of Digital Construction
  26. Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
    Additive Manufacturing of Geopolymer for Sustainable Built Environment
  27. Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
    Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques
  28. Pott Ursula, Stephan Dietmar (2021-04)
    Penetration-Test as a Fast Method to Determine Yield-Stress and Structural Build-Up for 3D Printing of Cementitious Materials
  29. Qian Ye, Kawashima Shiho (2016-09)
    Use of Creep Recovery Protocol to Measure Static Yield-Stress and Structural Rebuilding of Fresh Cement-Pastes
  30. Reiter Lex, Wangler Timothy, Anton Ana-Maria, Flatt Robert (2020-05)
    Setting-on-Demand for Digital Concrete:
    Principles, Measurements, Chemistry, Validation
  31. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  32. Suiker Akke, Wolfs Robert, Lucas Sandra, Salet Theo (2020-06)
    Elastic Buckling and Plastic Collapse During 3D Concrete Printing
  33. Szabó Anna, Reiter Lex, Lloret-Fritschi Ena, Wangler Timothy et al. (2020-07)
    ACDC:
    The Admixture-Controlled Digital Casting and Its Application to Thin-Folded Concrete Structures
  34. Wangler Timothy, Lloret-Fritschi Ena, Reiter Lex, Hack Norman et al. (2016-10)
    Digital Concrete:
    Opportunities and Challenges
  35. Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
    Digital Concrete:
    A Review
  36. Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
    Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model
  37. Wolfs Robert, Bos Freek, Salet Theo (2018-06)
    Correlation Between Destructive Compression Tests and Non-Destructive Ultrasonic Measurements on Early-Age 3D Printed Concrete
  38. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  39. Wolfs Robert, Bos Freek, Salet Theo (2019-06)
    Triaxial Compression Testing on Early-Age Concrete for Numerical Analysis of 3D Concrete Printing
  40. Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
    Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction

92 Citations

  1. Caneda-Martínez Laura, Hassan M., Demont Léo, Keita Emmanuel et al. (2026-01)
    Fast Penetration Testing of Printable Concretes with a Portable Device:
    Robustness and Calibration
  2. Mechtcherine Viktor, Gleiser Leonie (2026-01)
    Back to Earth:
    Building the Future with an Ancient Material
  3. Tinoco Matheus, Lima Moura Paiva Rayane, Andrade Luiza, Mendoza Reales Oscar (2025-12)
    Hybrid 3D Printable Mixtures Incorporating Fine Earth, Portland Cement, and Fly Ash:
    A Sustainable Alternative to Cement-Intensive Systems
  4. Tulliani Jean-Marc (2025-11)
    Latest Developments in 3D-Printed Engineered Cementitious Composites:
    Technologies, Prospects, and Challenges
  5. Garshasbi Sajad, Mousavi Seyed, Dehestani Mehdi, Nazarpour Hadi (2025-10)
    Sustainable Production of 3D Concrete Printing Using Agricultural Waste Fibers
  6. Li Yeou-Fong, Lin Chih-Chieh, Syu Jin-Yuan, Huang Chih-Hong et al. (2025-10)
    Enhancing 3D-Printed Cement Mortar with Recycled PCB Glass Fibers:
    Printability, Mechanical Strength, and FEM-Based Structural Assessment
  7. Kim Yoon-Chul, Han Tong-Seok (2025-10)
    Buildability Analysis in 3D Concrete Printing Using Computer Vision and Automated Annotation
  8. Yang Rijiao, Xu Chengji, You Xiufei, Li Xinze et al. (2025-09)
    Saddle Stitching-Enabled Interfacial Toughening in 3D Printed Concrete
  9. Márquez Álvaro, Varela Hugo, Barluenga Gonzalo (2025-09)
    Influence of Rheology Modifying Admixtures on the Buildability of 3D Printing Cement-Based Mortars
  10. Rahman S., Khair Sanjida, Shaikh Faiz, Sarker Prabir (2025-09)
    Decarbonized 3D Printed Concrete Incorporating Lithium Slag and PVA Fiber:
    Buildability, Mechanical, and Microstructural Insights
  11. Yang Shuai, Li Fei, Lu Ya, Xu Xiaoming et al. (2025-08)
    Study of the Printing Characteristics of a 3D Printing Solution for the Purpose of Process Optimization
  12. Xiahou Xiaer, Ding Xingyuan, Yu Ke-Ke, Lu Cong (2025-08)
    From Waste to Strength:
    Sustainable Valorization of Modified Recycled PET Fibers for Rheological Control and Performance Enhancement in 3D Printed Concrete
  13. Li Nan, Deng Yongjie, Li Weihong, Li Lingyu et al. (2025-08)
    Performance of Active-Magnesia-Based Magnesium Phosphate Cement and Application of Rapid-Solidification 3D Printing Technology
  14. Gerges Isabelle, Farraj Faten, Youssef Nicolas, Antczak Emmanuel et al. (2025-07)
    Methodologies to Design Optimum 3D Printable Mortar Mix:
    A Review
  15. Lu Chenyu, Sun Dongpu, Shen Qiang, Zhang Zhigang et al. (2025-07)
    Buildability of 3D Printing Engineered Cementitious Composites (ECC):
    A Comprehensive Assessment Framework Under Laboratory Conditions
  16. Cui Weijiu, Guo Ruyi, Liu Wenliang, Da Wan et al. (2025-07)
    Quality Assessment of 3D‐Printed Concrete Through Quantitative Visual Inspection
  17. Yang Rijiao, Xu Chengji, Fang Sen, Li Xinze et al. (2025-07)
    Mechanistic Insights into Microstructural Changes Caused by Stapling in Extrusion-Based 3D Printed Concrete (3DPC)
  18. Sando Mona, Stephan Dietmar (2025-07)
    Online Monitoring for 3D Printable Geopolymers:
    Automated Slug Test Analysis with Image Analysis Revealing Mixing Sequence Effects
  19. Els Heinrich, Zijl Gideon, Villiers Wibke (2025-06)
    A Review of Shrinkage and Restrained Shrinkage Cracking in 3D Concrete Printing
  20. Li Long, Ji Weiyi, Xiao Jianzhuang, Xiao Jie et al. (2025-06)
    Strategy for Improving Buildability of 3D Printing Concrete Using CO2 Mixing and Chemical Admixtures
  21. Duan Yuhang, Wang Chuan, Yin Binbin, Liew Kim (2025-06)
    Modeling Interfacial Failure in 3D-Printed Concrete via Peridynamics
  22. Chen Wei, Pan Jinlong, Zhu Binrong, Han Jinsheng et al. (2025-03)
    Nonlinear Predictive Modeling of Building Rates Incorporating Filament Compression Deformations in 3D Printed Geopolymer Concrete
  23. Gardan Julien, Hedjazi Lofti, Attajer Ali (2025-02)
    Additive Manufacturing in Construction:
    State of the Art and Emerging Trends in Civil Engineering
  24. Sapata Alise, Šinka Māris, Šahmenko Genādijs, Korat Bensa Lidija et al. (2025-02)
    Establishing Benchmark Properties for 3D-Printed Concrete:
    A Study of Printability, Strength, and Durability
  25. Sando Mona, Stephan Dietmar (2025-02)
    The Role of Mixing Sequence in Shaping the 3D-Printability of Geopolymers
  26. Nadi Mouad, Majdoubi Hicham, Haddaji Younesse, Bili Oumaima et al. (2025-01)
    Digital Fabrication Processes for Cementitious Materials Using Three-Dimensional 3D Printing Technologies
  27. Tinoco Matheus, Cavalcante Tiago, Andrade Luiza, Araújo Olga et al. (2025-01)
    Mix-Design-Strategies for 3D Printable Bio-Based Cementitious Composites Using Rice-Husk-Particles as Multifunctional Aggregates
  28. Márquez Álvaro, Varela Hugo, Barluenga Gonzalo (2024-12)
    Rheology and Early-Age Evaluation of 3D Printable Cement-Limestone-Filler-Pastes with Nano-Clays and Methylcellulose
  29. Bang Jin, Yim Hong (2024-10)
    Unbonded Inter-Layer Evaluation in Freshly 3D Printed Concrete Using Electrical Resistivity Measurements
  30. Varela Hugo, Tinoco Matheus, Mendoza Reales Oscar, Toledo Filho Romildo et al. (2024-10)
    3D Printable Cement-Based Composites Reinforced with Sisal-Fibers:
    Rheology, Printability and Hardened Properties
  31. Dong Enlai, Jia Zijian, Jia Lutao, Rao Suduan et al. (2024-10)
    Modeling Fiber-Alignment in 3D Printed Ultra-High-Performance Concrete Based on Stereology-Theory
  32. Althoey Fadi, Zaid Osama, Ahmed Bilal, Elhadi Khaled (2024-10)
    Impact of Double Hooked Steel-Fibers and Nano-Kaolin-Clay on Fresh Properties of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete
  33. Varela Hugo, Barluenga Gonzalo, Sonebi Mohammed (2024-09)
    Evaluation of Basalt-Fibers and Nano-Clays to Enhance Extrudability and Buildability of 3D Printing Mortars
  34. Reißig Silvia, Herdan Annika, Mechtcherine Viktor (2024-09)
    Rheological Behavior of Steel-Fiber-Reinforced Concrete in the Context of Additive Manufacturing
  35. Sheng Zhaoliang, Zhu Binrong, Cai Jingming, Han Jinsheng et al. (2024-09)
    Influence of Waste-Glass-Powder on Printability and Mechanical Properties of 3D Printing Geopolymer Concrete
  36. Ivaniuk Egor, Reißig Silvia, Mechtcherine Viktor (2024-09)
    Automating Penetration Tests for Fresh 3D Printed Cementitious Materials
  37. Valera Hugo, Pimentel Tinoco Matheus, Mendoza Reales Oscar, Toledo Filho Romildo et al. (2024-09)
    Rheological and 3D Printing-Assessment of Sisal-Fiber Mortar for Architectural Applications
  38. Will Frank, Storch Florian, Plaschnick Paul, Taubert Markus et al. (2024-09)
    Large-Scale Monolithic Printing with Ready-Mixed Concrete:
    Challenges and Solutions
  39. Prihar Arjun, Gupta Shashank, Esmaeeli Hadi, Moini Mohamadreza (2024-08)
    Tough Double-Bouligand Architected Concrete Enabled by Robotic Additive Manufacturing
  40. Yan Ruizhen, Meng Fangqi, Ke Guoju, Jia Kerui (2024-08)
    Comparative Evaluation of the Applicability of 3D Printing Mortar with Different Waste-Powders
  41. Giwa Ilerioluwa, Kazemian Ali, Gopu Vijaya, Rupnow Tyson (2024-07)
    A Compressive Load-Bearing-Analysis of 3D Printed Circular Elements
  42. Zhang Nan, Sanjayan Jay (2024-07)
    Pumping-Less 3D Concrete Printing Using Quick Nozzle Mixing
  43. Ivaniuk Egor, Tošić Zlata, Müller Steffen, Lordick Daniel et al. (2024-07)
    Automated Manufacturing of Reinforced Modules of Segmented Shells Based on 3D Printing with Strain-Hardening Cementitious Composites
  44. Zhu Jinggao, Cervera Miguel, Ren Xiaodan (2024-06)
    Buildability of Complex 3D Printed Concrete Geometries Using Peridynamics
  45. Gu Yucun, Khayat Kamal (2024-06)
    Effect of Superabsorbent Polymer on 3D Printing Characteristics as Rheology-Modified-Agent
  46. Šahmenko Genādijs, Puzule Līga, Sapata Alise, Šlosbergs Pēteris et al. (2024-06)
    Gypsum-Cement-Pozzolan Composites for 3D Printing:
    Properties and Life Cycle Assessment
  47. Basha Shaik, Nugraha Joshua, Rehman Atta, Choi Kichang et al. (2024-06)
    Structuration and Yield Strength Characterization of Hybrid Alkali-Activated Cement Composites for Ultra-Rapid 3D Construction Printing
  48. Birru Bizu, Rehman Atta, Kim Jung-Hoon (2024-06)
    Comparative Analysis of Structural Build-Up in One-Component Stiff and Two-Component Shotcrete-Accelerated Set-on-Demand Mixtures for 3D Concrete Printing
  49. Matos Paulo, Prigol Hellen, Schackow Adilson, Silva Nazário Samara et al. (2024-06)
    Quality-Control-Tests of Fresh 3D Printable Cement-Based Materials
  50. Gu Yucun, Khayat Kamal (2024-05)
    Extrudability Window and Off-Line Test-Methods to Predict Buildability of 3D Printing Concrete
  51. Sun Bochao, Dominicus Randy, Dong Enlai, Li Peichen et al. (2024-04)
    Predicting the Strength Development of 3D Printed Concrete Considering the Synergistic Effect of Curing-Temperature and Humidity:
    From Perspective of Modified Maturity-Model
  52. Sun Chang, Zhao Haiye, Liu Qiong, Pan Feng (2024-04)
    Shear Behavior of 3DPM-NM Specimens with Different Interfacial Locking Designs
  53. Ma Lei, Jia Zijian, Chen Yuning, Jiang Yifan et al. (2024-03)
    Water Loss and Shrinkage Prediction in 3D Printed Concrete with Varying w/b and Specimen Sizes
  54. Mechtcherine Viktor, Kuhn Alexander, Mai (née Dressler) Inka, Nerella Venkatesh et al. (2024-03)
    Additive Manufacturing with Concrete:
    Guidelines for Planning and Implementing Projects
  55. Liu Xinhao, Hu Jiajun, Guo Xiaolu (2024-03)
    Printability and Inter-Layer Bonding Property of 3D Printed Fiber-Reinforced Geopolymer
  56. Jia Lutao, Jia Zijian, Zhang Zedi, Tang Zhenzhong et al. (2024-02)
    Effect of Recycled Brick-Powder with Various Particle-Features on Early-Age Hydration, Water-State, and Rheological Properties of Blended Cement-Paste in the Context of 3D Printing
  57. Isaac Geoff, Nicholas Paul, Paul Gavin, Pietroni Nico et al. (2024-02)
    Automated Shotcrete:
    A More Sustainable Construction Technology
  58. Rehman Atta, Kim Ik-Gyeom, Kim Jung-Hoon (2024-01)
    Towards Full Automation in 3D Concrete Printing Construction:
    Development of an Automated and In-Line Test-Method for In-Situ Assessment of Structural Build-Up and Quality of Concrete
  59. Bono Victor, Ducoulombier Nicolas, Mesnil Romain, Caron Jean-François (2023-12)
    Methodology for Formulating Low-Carbon Printable Mortar Through Particles-Packing-Optimization
  60. Wang Yang, Qiu Liu-Chao, Chen Song-Gui, Liu Yi (2023-12)
    3D Concrete Printing in Air and Under Water:
    A Comparative Study on the Buildability and Inter-Layer Adhesion
  61. Li Yeou-Fong, Tsai Pei-Jen, Syu Jin-Yuan, Lok Man-Hoi et al. (2023-12)
    Mechanical Properties of 3D Printed Carbon Fiber-Reinforced Cement Mortar
  62. Reißig Silvia, Bedolla Carolin, Meyer Tamara, Mechtcherine Viktor (2023-12)
    Rheological Behavior of Fiber-Reinforced LC3 Fine-Grained Concrete in the Context of Additive Manufacturing
  63. Liu Qiong, Cheng Shengbo, Sun Chang, Chen Kailun et al. (2023-11)
    Steel-Cable Bonding in Fresh Mortar and 3D Printed Beam Flexural Behavior
  64. Gao Huaxing, Chen Yuxuan, Chen Qian, Yu Qingliang (2023-11)
    Thermal and Mechanical Performance of 3D Printing Functionally Graded Concrete:
    The Role of SAC on the Rheology and Phase Evolution of 3DPC
  65. Zou Mengtong, Liu Chuanbei, Zhang Keying, Li Wuqian et al. (2023-11)
    Evaluation and Control of Printability and Rheological Properties of 3D Printed Rubberized Concrete
  66. Markin Slava, Cordova Julian, Mechtcherine Viktor (2023-10)
    Evolution of Capillary Pressure in 3D Printed Concrete Elements:
    Numerical Modelling and Experimental Validation
  67. Markin Slava, Mechtcherine Viktor (2023-10)
    The Effect of Layer Cross-Section on Plastic Shrinkage Cracking of 3D Printed Concrete Elements
  68. Liu Yi, Wang Li, Yuan Qiang, Peng Jianwei (2023-09)
    Effect of Coarse Aggregate on Printability and Mechanical Properties of 3D Printed Concrete
  69. Rehman Atta, Perrot Arnaud, Birru Bizu, Kim Jung-Hoon (2023-09)
    Recommendations for Quality-Control in Industrial 3D Concrete Printing Construction with Mono-Component Concrete:
    A Critical Evaluation of Ten Test-Methods and the Introduction of the Performance-Index
  70. Matos Paulo, Zat Tuani, Lima Marcelo, Neto José et al. (2023-08)
    Effect of the Superplasticizer-Addition Time on the Fresh Properties of 3D Printed Limestone-Calcined-Clay-Cement (LC³) Concrete
  71. Varela Hugo, Barluenga Gonzalo, Sonebi Mohammed (2023-07)
    Rheology Characterization of 3D Printing Mortars with Nano-Clays and Basalt-Fibers
  72. Varela Hugo, Barluenga Gonzalo, Perrot Arnaud (2023-07)
    Extrusion and Structural Build-Up of 3D Printing Cement-Pastes with Fly-Ash, Nano-Clay and VMAs
  73. Pott Ursula, Jakob Cordula, Dorn Tobias, Stephan Dietmar (2023-07)
    Investigation of a Shotcrete-Accelerator for Targeted Control of Material-Properties for 3D Concrete Printing Injection-Method
  74. Robens-Radermacher Annika, Unger Jörg, Mezhov Alexander, Schmidt Wolfram (2023-07)
    Temperature-Dependent Modelling Approach for Early-Age Behavior of Printable Mortars
  75. Zhu Jinggao, Ren Xiaodan, Cervera Miguel (2023-07)
    Peridynamic Buildability-Analysis of 3D Printed Concrete Including Damage, Plastic Flow and Collapse
  76. Pott Ursula, Jakob Cordula, Wolf Julian, Stephan Dietmar (2023-06)
    Comparison of Physical and Physico-Chemical Methods for 3D Printing Application with the Focus on the Unconfined Uniaxial Compression-Test
  77. Kruppa Henning, Kalthoff Matthias, Neef Tobias, Reißig Silvia et al. (2023-06)
    Alkali-Activated Binder-Requirements for Extrusion and 3D Printing of Carbon-Reinforced Concrete
  78. Richter Christiane, Jungwirth Jörg (2023-06)
    3D Concrete Printing:
    From Mechanical Properties to Structural Analysis
  79. Wang Li, Ye Kehan, Wan Qian, Li Zhijian et al. (2023-05)
    Inclined 3D Concrete Printing:
    Build-Up Prediction and Early-Age Performance-Optimization
  80. Markin Slava, Mechtcherine Viktor (2023-03)
    Quantification of Plastic Shrinkage and Plastic Shrinkage Cracking of the 3D Printable Concretes Using 2D Digital Image Correlation
  81. Kilic Ugur, Ma Ji, Baharlou Ehsan, Ozbulut Osman (2023-03)
    Effects of Viscosity-Modifying Admixture and Nano-Clay on Fresh and Rheo-Viscoelastic Properties and Printability Characteristics of Cementitious Composites
  82. Tamimi Adil, Alqamish Habib, Khaldoune Ahlam, Alhaidary Haidar et al. (2023-03)
    Framework of 3D Concrete Printing Potential and Challenges
  83. Arunothayan Arun, Nematollahi Behzad, Khayat Kamal, Ramesh Akilesh et al. (2022-11)
    Rheological Characterization of Ultra-High-Performance Concrete for 3D Printing
  84. Melichar Jindřich, Žižková Nikol, Brožovský Jiří, Mészárosová Lenka et al. (2022-11)
    Study of the Interaction of Cement-Based Materials for 3D Printing with Fly-Ash and Superabsorbent Polymers
  85. Ivanova Irina, Mechtcherine Viktor, Reißig Silvia (2022-09)
    Vergleich von Bewertungsmethoden für die rheologischen Eigenschaften von frisch gedrucktem Beton
  86. Li Mingyang, Weng Yiwei, Liu Zhixin, Zhang Dong et al. (2022-09)
    Optimizing of Chemical Admixtures for 3D Printable Cementitious Materials by Central Composite Design
  87. Mortada Youssef, Mohammad Malek, Mansoor Bilal, Grasley Zachary et al. (2022-09)
    Development of Test-Methods to Evaluate the Printability of Concrete Materials for Additive Manufacturing
  88. Pott Ursula, Wolf Christoph, Petryna Yuri, Stephan Dietmar (2022-09)
    Evaluation of the Unconfined Uniaxial Compression-Test to Study the Evolution of Apparent Printable Mortar-Properties During the Early-Age Transition-Regime
  89. Zhou Wen, McGee Wesley, Zhu He, Gökçe H. et al. (2022-08)
    Time-Dependent Fresh Properties Characterization of 3D Printing Engineered Cementitious Composites:
    On the Evaluation of Buildability
  90. Matos Paulo, Zat Tuani, Corazza Kiara, Fensterseifer Emilia et al. (2022-05)
    Effect of TiO2 Nano-Particles on the Fresh Performance of 3D Printed Cementitious Materials
  91. Klyuev Sergey, Klyuev Alexander, Fediuk Roman, Ageeva Marina et al. (2022-04)
    Fresh and Mechanical Properties of Low-Cement Mortars for 3D Printing
  92. Nguyen Vuong, Nguyen-Xuan Hung, Panda Biranchi, Tran Jonathan (2022-03)
    3D Concrete Printing Modelling of Thin-Walled Structures

BibTeX
@article{ivan_ivan_bise_nere.2022.CBMfIAoBiF3PMaC,
  author            = "Irina Ivanova and Egor Ivaniuk and Sameercharan Bisetti and Venkatesh Naidu Nerella and Viktor Mechtcherine",
  title             = "Comparison Between Methods for Indirect Assessment of Buildability in Fresh 3D Printed Mortar and Concrete",
  doi               = "10.1016/j.cemconres.2022.106764",
  year              = "2022",
  journal           = "Cement and Concrete Research",
  volume            = "156",
}
Formatted Citation

I. Ivanova, E. Ivaniuk, S. Bisetti, V. N. Nerella and V. Mechtcherine, “Comparison Between Methods for Indirect Assessment of Buildability in Fresh 3D Printed Mortar and Concrete”, Cement and Concrete Research, vol. 156, 2022, doi: 10.1016/j.cemconres.2022.106764.

Ivanova, Irina, Egor Ivaniuk, Sameercharan Bisetti, Venkatesh Naidu Nerella, and Viktor Mechtcherine. “Comparison Between Methods for Indirect Assessment of Buildability in Fresh 3D Printed Mortar and Concrete”. Cement and Concrete Research 156 (2022). https://doi.org/10.1016/j.cemconres.2022.106764.