Skip to content

Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete (2021-06)

10.1016/j.cemconcomp.2021.104158

 Liu Chao, Wang Xianggang,  Chen Yuning,  Zhang Chao, Ma Lei, Deng Zhicong, Chen Chun,  Zhang Yamei,  Pan Jinlong,  Banthia Nemkumar
Journal Article - Cement and Concrete Composites, Vol. 122

Abstract

Printability is a key parameter that affects the application of foam concrete to 3D printing. In this study, the hydroxypropyl methylcellulose (HPMC) and silica fume (SF) were doped into foam concrete as a viscosity modifier and thixotropic agent, and their effects on the stability, rheological properties, and printability of 3D printing foam concrete were investigated. Both HPMC and SF effectively reduced the volume bleeding rate of foam concrete, while HPMC was beneficial for stabilizing the foam, and SF increased the wet density of foam concrete. With the increase in the dosage of HPMC and SF and resting time, the static yield stress, dynamic yield stress, and plastic viscosity of foam concrete increased continuously. SF increased the static yield stress considerably, while HPMC affected the dynamic yield stress and plastic viscosity considerably. It is suggested to combine tanθ and stack height of the printed foam concrete together to evaluate the buildability of 3D printing foam concrete. The suitable ranges of static yield stress, dynamic yield stress and plastic viscosity for 3D printable foam concrete with a wet density from 1550 to 1850 kg/m3 are 1113–1658 Pa, 66.4–230.1 Pa, and 2.08–3.71 Pa s, respectively. The compressive strength of the 3D printed foam concrete with dry density of 1815 kg/m3 in the testing direction Z, Y, and X reached 19.9 MPa, 28.5 MPa and 24.6 MPa, respectively.

35 References

  1. Alghamdi Hussam, Nair Sooraj, Neithalath Narayanan (2019-02)
    Insights into Material-Design, Extrusion Rheology, and Properties of 3D Printable Alkali-Activated Fly-Ash-Based Binders
  2. Alghamdi Hussam, Neithalath Narayanan (2019-07)
    Synthesis and Characterization of 3D Printable Geopolymeric Foams for Thermally Efficient Building Envelope Materials
  3. Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
    Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture
  4. Chen Mingxu, Li Laibo, Wang Jiaao, Huang Yongbo et al. (2019-10)
    Rheological Parameters and Building Time of 3D Printing Sulphoaluminate-Cement-Paste Modified by Retarder and Diatomite
  5. Chen Mingxu, Liu Bo, Li Laibo, Cao Lidong et al. (2020-01)
    Rheological Parameters, Thixotropy and Creep of 3D Printed Calcium-Sulfoaluminate-Cement Composites Modified by Bentonite
  6. Chen Mingxu, Yang Lei, Zheng Yan, Huang Yongbo et al. (2020-04)
    Yield-Stress and Thixotropy-Control of 3D Printed Calcium-Sulfoaluminate Cement Composites with Metakaolin Related to Structural Build-Up
  7. Craveiro Flávio, Nazarian Shadi, Bártolo Helena, Bartolo Paulo et al. (2020-02)
    An Automated System for 3D Printing Functionally Graded Concrete-Based Materials
  8. Ding Tao, Xiao Jianzhuang, Qin Fei, Duan Zhenhua (2020-03)
    Mechanical Behavior of 3D Printed Mortar with Recycled Sand at Early-Ages
  9. Falliano Devid, Domenico Dario, Ricciardi Giuseppe, Gugliandolo Ernesto (2020-04)
    3D Printable Lightweight Foamed Concrete and Comparison with Classical Foamed Concrete in Terms of Fresh State Properties and Mechanical Strength
  10. Geng Zifan, She Wei, Zuo Wenqiang, Lyu Kai et al. (2020-09)
    Layer-Interface Properties in 3D Printed Concrete:
    Dual Hierarchical Structure and Micromechanical Characterization
  11. Guo Xiaolu, Yang Junyi, Xiong Guiyan (2020-09)
    Influence of Supplementary Cementitious Materials on Rheological Properties of 3D Printed Fly-Ash-Based Geopolymer
  12. Lim Jian, Panda Biranchi, Pham Quang-Cuong (2018-05)
    Improving Flexural Characteristics of 3D Printed Geopolymer Composites with In-Process Steel-Cable-Reinforcement
  13. Liu Zhixin, Li Mingyang, Weng Yiwei, Wong Teck et al. (2018-12)
    Mixture-Design-Approach to Optimize the Rheological Properties of the Material Used in 3D Cementitious Material-Printing
  14. Long Wujian, Lin Can, Tao Jie-Lin, Ye Taohua et al. (2021-02)
    Printability and Particle-Packing of 3D Printable Limestone-Calcined-Clay-Cement Composites
  15. Long Wujian, Tao Jie-Lin, Lin Can, Gu Yucun et al. (2019-08)
    Rheology and Buildability of Sustainable Cement-Based Composites Containing Micro-Crystalline Cellulose for 3D Printing
  16. Marchment Taylor, Sanjayan Jay, Xia Ming (2019-03)
    Method of Enhancing Inter-Layer Bond Strength in Construction-Scale 3D Printing with Mortar by Effective Bond Area Amplification
  17. Markin Slava, Nerella Venkatesh, Schröfl Christof, Guseynova Gyunay et al. (2019-07)
    Material-Design and Performance-Evaluation of Foam-Concrete for Digital Fabrication
  18. Markin Slava, Šahmenko Genādijs, Nerella Venkatesh, Näther Mathias et al. (2019-11)
    Investigations on the Foam-Concrete Production Techniques Suitable for 3D Printing with Foam-Concrete
  19. Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
    Extrusion-Based Additive Manufacturing with Cement-Based Materials:
    Production Steps, Processes, and Their Underlying Physics
  20. Mendoza Reales Oscar, Duda Pedro, Silva Emílio, Paiva Maria et al. (2019-06)
    Nanosilica-Particles as Structural Buildup Agents for 3D Printing with Portland Cement-Pastes
  21. Moeini Mohammad, Hosseinpoor Masoud, Yahia Ammar (2020-05)
    Effectiveness of the Rheometric Methods to Evaluate the Build-Up of Cementitious Mortars Used for 3D Printing
  22. Ngo Tuan, Kashani Alireza, Imbalzano Gabriele, Nguyen Quynh et al. (2018-02)
    Additive Manufacturing (3D Printing):
    A Review of Materials, Methods, Applications and Challenges
  23. Panda Biranchi, Bhagath Singh Gangapatnam, Unluer Cise, Tan Ming (2019-02)
    Synthesis and Characterization of One-Part Geopolymers for Extrusion-Based 3D Concrete Printing
  24. Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
    Additive Manufacturing of Geopolymer for Sustainable Built Environment
  25. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2020-01)
    Investigation of the Properties of Alkali-Activated Slag Mixes Involving the Use of Nano-Clay and Nucleation-Seeds for 3D Printing
  26. Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
    Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction
  27. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
    3D Printable Concrete:
    Mixture-Design and Test-Methods
  28. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  29. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  30. Tay Yi, Qian Ye, Tan Ming (2019-05)
    Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test
  31. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  32. Wu Peng, Wang Jun, Wang Xiangyu (2016-04)
    A Critical Review of the Use of 3D Printing in the Construction Industry
  33. Zhang Chao, Hou Zeyu, Chen Chun, Zhang Yamei et al. (2019-09)
    Design of 3D Printable Concrete Based on the Relationship Between Flowability of Cement-Paste and Optimum Aggregate-Content
  34. Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
    A Review of the Current Progress and Application of 3D Printed Concrete
  35. Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
    Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete

151 Citations

  1. Liu Chao, Chen Xianqin, Luo Zhiyu, Liu Huawei et al. (2026-01)
    Effects of Pore Defects on Interfacial Bonding Between Rebar and 3D Printed Coarse Aggregate Concrete Under Multiple Loading Conditions
  2. Tushar Fazlul, Hasan Mehedi, Hasan Kamrul, Mawa Jannatul et al. (2026-01)
    Factors Affecting Flowability and Rheological Behavior of 3D Printed Concrete:
    A Comprehensive Review
  3. Iqbal Imtiaz, Kasim Tala, Besklubova Svetlana, Inqiad Waleed et al. (2025-12)
    Exploring Knowledge Domains and Future Research Directions in 3D Printed Concrete:
    A Bibliometric and Systematic Review
  4. Xue Jia-Chen, Wang Wei-Chien, Lee Ming-Gin, Huang Chia-Yun et al. (2025-12)
    Effect of Aggregate-to-Binder Ratio on 3D Printed Concrete:
    Printability, Mechanics, and Shrinkage
  5. Cheng Zhangqi, Li Keyan, Liu Renlong (2025-12)
    Sustainable 3D Printed Engineered Cementitious Composites Incorporating Recycled Ceramic Materials:
    Rheology and Mechanical Behavior
  6. Feng Hu, Yuan Xiang, Yu Zhenyu, Guo Aofei et al. (2025-12)
    Printability and Rheological Properties of 3D Printing Ultra-High Ductility Magnesium Phosphate Cement-Based Composites
  7. Si Wen, Khan Mehran, McNally Ciaran (2025-11)
    Rheological Optimization and Mechanical Performance Assessment of High-Volume GGBS-Silica Fume Mortars for 3D Printing
  8. Abbas Yassir, Alsaif Abdulaziz (2025-11)
    Explainable Data-Driven Modeling for Optimized Mix Design of 3D-Printed Concrete:
    Interpreting Nonlinear Synergies Among Binder Components and Proportions
  9. Geng Renyu, Jiang Jinming, Du Pengcong, Zhang Huiliang et al. (2025-11)
    Multiscale Thermal Optimization of 3D-Printed Walls:
    Integrating Structure, Material, and Process with Fire-Thermal Synergy
  10. Zhou Jiehang, Du Longyu, Wu Kai, Lai Jianzhong et al. (2025-11)
    Effective Factors and a Prediction Method on Extrusion Flow of 3D Printed Concrete
  11. Baah Thomas, Kim Heejeong, Latypov Marat (2025-11)
    Multi-Objective Adaptive Experimental Approach for Optimizing 3D Concrete Printing Mixtures and Parameters Incorporating Construction and Demolition Waste for Sustainable Construction
  12. Hasan Md, Xu Jie, Uddin Md (2025-11)
    A Critical Review of 3D Printed Fiber-Based Geopolymer Concrete:
    Fresh Properties, Mechanical Performance, and Current Limitations
  13. Türk Ayşe, Türk Furkan, Edebali Serpil, Keskin Ülkü (2025-11)
    3D Printable Mortars with Green Materials:
    Sustainable Solutions with Nanocellulose
  14. Wang Hailong, Song Xinlei, Shen Wenbin, Sun Xiaoyan et al. (2025-10)
    Evaluation and Optimization of 3D-Printed Concrete Based on Flowability Considering Printability and Micro-Pore Characteristics
  15. Wang Huai, Li Xiulin, Gong Hao, Xu Jingjie et al. (2025-10)
    Thermal and Mechanical Properties of 3D-Printed Fiber-Reinforced Lightweight Concrete Based on Air Entrainment and Hollow Glass Microspheres
  16. Nasr Ahmed, Wang Jiyuan, Duan Zhenhua, Deng Qi et al. (2025-09)
    Assessing the Visibility and Impact of Recycled High-Density Polyethylene Fibers in 3D-Printed Cementitious Composites
  17. Li Leo, Fei Zuojie, Jiao Chujie, Luo Tao et al. (2025-09)
    Bauxite Residue-Based 3D Printing Mortar:
    Enhancing Performance and Sustainability Through the Paste Replacement Approach
  18. Luo Surong, Jin Wenhao, Zhang Zhaorui, Zhang Kaijian (2025-09)
    Constitutive Relationship of 3D Printed Fiber Reinforced Recycled Sand Concrete Under Uniaxial Compression
  19. Xue Jia-Chen, Wang Wei-Chien, Lee Ming-Gin, Huang Chia-Yun (2025-09)
    Development of Sustainable 3D Printing Concrete Materials:
    Impact of Natural Minerals and Wastes at High Replacement Ratios
  20. Liu Zhixin, Si Liang, Liu Yebao, Li Mingyang et al. (2025-08)
    Optimization of Printing Parameters Based on Computational Fluid Dynamics for Uniform Filament Mass Distribution at Corners in 3D Cementitious Material Printing
  21. Geng Shao-bo, Zhang Chen, Zhang Hui, Hai Lu et al. (2025-08)
    Upcycling Coal Gangue Coarse Aggregates into 3D Printed Concrete:
    Multi-Scale Mechanisms of Fracture Behaviour
  22. Mani Aravindhraj, Sekar Muthu (2025-08)
    NDT Techniques for Evaluating Mechanical Properties in Green and Fiber-Reinforced 3D Printable Mixes
  23. Ramakrishnan Sayanthan, Pasupathy Kirubajiny, Manalo Allan, Sanjayan Jay (2025-07)
    Rheological, Mechanical and Fire Resistance Performance of Waste Glass Activated Geopolymers for Concrete 3D Printing
  24. Pan Keheng, Cheng Yinhan, Qu Guangfei, Yuan Zheng et al. (2025-07)
    Development and Optimization of Geopolymer-Based 3D Printing Materials Utilizing Industrial Solid Waste:
    Rheological Properties and Practical Applications
  25. Jin Yuan, Jiang Chengzhi, Gan Xingyu, Sun Zhaoyang et al. (2025-07)
    Enhancing the Printability of 3D Printed White Cementitious Materials with Accelerators:
    Evolution of Early-Age Hydration and Rheology
  26. Goel Devansh, Kore Sudarshan (2025-07)
    Mapping the Bibliometric Progression of 3D Concrete Printing:
    A Concise Review
  27. Zafar Tayyab, Zafar Muhammad, Hojati Maryam (2025-07)
    Exploring the 3D Printability of Engineered Cementitious Composites with Internal Curing for Resilient Construction in Arid Regions
  28. Šána Vladimír, Litoš Jiří (2025-07)
    Load-Bearing Capacity of the 3D Printed Concrete Structure Based on a Static Assessment and Load Test in Scale 1:1
  29. Dai Pengfei, Luo Zhenhua, Wang Yalun, Mbabazi Justin et al. (2025-06)
    Waste Plastic Fiber Reinforced Cementitious Cavity Structures Manufactured by Mortar Extrusion 3D Printing
  30. Song Xinlei, Xu Quanbiao, Wang Hailong, Sun Xiaoyan et al. (2025-05)
    Flowability-Dependent Anisotropic Mechanical Properties of 3D Printing Concrete:
    Experimental and Theoretical Study
  31. Geng Songyuan, Cheng Boyuan, Long Wujian, Luo Qiling et al. (2025-05)
    Co-Driven Physics and Machine Learning for Intelligent Control in High-Precision 3D Concrete Printing
  32. Nieświec Martyna, Chajec Adrian, Šavija Branko (2025-05)
    Effect of Ground Copper Slag on the Fresh Properties of 3d Printed Cementitious Composites
  33. Sun Yuhang, Wang Haonan, Zhang Yi, Liu Xiongfei et al. (2025-05)
    Spray-Based 3D Printed Foam Concrete:
    Stress Concentration Relieve Utilization
  34. Liu Qiong, Singh Amardeep, Wang Qiming, Qifeng Lyu (2025-05)
    3D-Printed Application in Concretes
  35. Salifu N., Bassuoni Mohamed, Guven Gursans (2025-05)
    Performance Evaluation of Limestone-Blended Cement and Cellulose Nanomaterials in 3D Concrete Printing
  36. Lori Ali, Novais Rui, Ascensão Guilherme, Fernandes Fábio et al. (2025-05)
    Chemically Foamed Geopolymers for 3D Printing Applications
  37. Das B., Prathap Y., Sandeep Ankit, Vaghamshi Keval et al. (2025-05)
    Reviewing the Materials Selection, Rheology, Durability, and Microstructural Characteristics of 3D Printed Concrete
  38. An Ning, Wang Huai, Wang Peijun, Xu Chuanhua et al. (2025-04)
    Tension-Compression Anisotropic Cohesion Model for the Interlayer Interface of 3D-Printed Concrete Compression Specimens
  39. Xia Kailun, Chen Yuning, Chen Yu, Jia Lutao et al. (2025-04)
    Programmable Toughening for 3D Printed Concrete and Architected Cementitious Materials
  40. Kurniati Eka, Kim Heejeong (2025-04)
    Enhancing the Printability of 3D Printing Limestone Calcined Clay Cement Using Hydroxyethyl Cellulose Admixture and Silica Fume
  41. Tseng Kuo-Chang, Chi Maochieh, Yeih Weichung, Huang Ran (2025-04)
    Influence of Slag/Fly Ash as Partial Cement Replacement on Printability and Mechanical Properties of 3D-Printed Concrete
  42. Mim Nusrat, Shaikh Faiz, Sarker Prabir (2025-03)
    Sustainable 3D Printed Concrete Incorporating Alternative Fine Aggregates:
    A Review
  43. Nieświec Martyna, Chajec Adrian (2025-03)
    Effect of Materials on the Properties of Fresh Cementitious Composites for 3D Printing:
    Short Review
  44. Aktürk Büşra, Ertuğrul Onur, Özen Ömer, Oktay Didem et al. (2025-03)
    Influence of Nano-Silica and R-MgO on Rheological Properties, 3D Printability, and Mechanical Properties of One-Part Sodium Carbonate-Activated Slag-Based Mixes
  45. Li Yifan, Chen Shuisheng, Yang Liuhua, Guo Chuan et al. (2025-02)
    Investigation of the Impact of Material Rheology on the Interlayer Bonding Performance of Solid Waste 3D-Printed Components
  46. Nasr Ahmed, Duan Zhenhua, Singh Amardeep, Deng Qi et al. (2025-02)
    Fresh Properties and Rheological Behavior of 3D-Printed Cementitious Composites Incorporating Recycled PVC and Nylon Fibers:
    An Experimental Approach
  47. An Xuehui, Liang Qimin, Li Pengfei, You Wei et al. (2025-02)
    Experimental Assessment on Printing Performance and Mechanical Properties of Underwater Self-Protecting 3D Printing Concrete
  48. Rudziewicz Magdalena, Maroszek Marcin, Hutyra Adam, Góra Michał et al. (2025-02)
    Influence of Foaming Agents and Stabilizers on Porosity in 3D Printed Foamed Concrete
  49. Chen Wei, Guan Yongying, Zhu Binrong, Han Jinsheng et al. (2025-01)
    Influence of Extruded Strip-Shape and Dimension on the Mechanical Properties and Pore-Characteristics of 3D Printed Geopolymer Concrete
  50. Chen Meng, Li Jiahui, Zhang Tong, Zhang Mingzhong (2025-01)
    3D Printability of Recycled Steel-Fiber-Reinforced Ultra-High-Performance Concrete
  51. Li Leo, Zhang Guang-Hu, Kwan Albert (2025-01)
    Exploring Submarine 3D Printing:
    Enhancing Washout-Resistance and Strength of 3D Printable Mortar
  52. Lyu Qifeng, Wang Yalun, Chen Dongjian, Liu Shiyuan et al. (2025-01)
    Energy Storage Properties and Mechanical Strengths of 3D Printed Porous Concrete Structural Supercapacitors Reinforced by Electrodes Made of Carbon-Black-Coated Ni Foam
  53. Wang Qingwei, Han Song, Liu Qi, Yang Junhao et al. (2024-12)
    Research on the 3D Printing Process and Filament Shape of Cementitious Materials in Low Gravity
  54. Zhou Longfei, Gou Mifeng, Zhang Haibo, Hama Yukio (2024-12)
    Investigation of Activated Bauxite-Tailings for Application in 3D Printed Concrete via a Modified Anderson and Anderson-Model
  55. Irshidat Mohammad, Cabibihan John-John, Fadli Fodil, Ramahi Siraj et al. (2024-12)
    Waste Materials Utilization in 3D Printable Concrete for Sustainable Construction Applications:
    A Review
  56. Khan Mirza, Ahmed Aayzaz, Ali Tariq, Qureshi Muhammad et al. (2024-12)
    Comprehensive Review of 3D Printed Concrete, Life Cycle Assessment, AI and ML Models:
    Materials, Engineered Properties and Techniques for Additive Manufacturing
  57. Jin Willy, Caron Jean-François, Ouellet-Plamondon Claudiane (2024-11)
    Minimizing the Carbon Footprint of 3D Printing Concrete:
    Leveraging Parametric LCA and Neural Networks Through Multi-Objective-Optimization
  58. Li L., Fang Z., Chu S., Kwan Albert (2024-11)
    Improving Mechanical Properties of 3D Printed Mortar by Exploiting Synergistic Effects of Fly-Ash-Microsphere and Nano-Silica
  59. Murali Gunasekaran, Leong Sing (2024-11)
    Waste-Driven Construction:
    A State of the Art Review on the Integration of Waste in 3D Printed Concrete in Recent Researches for Sustainable Development
  60. Zhi Zhenzhen, Guo Yanfei, Qi Huahui, Tan Hongbo et al. (2024-11)
    Effect of Alkali-Metal-Sulfates on Hydration Properties of Alpha-Calcium-Sulfate-Hemihydrate for 3D Printing
  61. Yang Yekai, Zhang Chiyu, Liu Zhongxian, Dong Liang et al. (2024-10)
    Effect of Hydration Process on the Inter-Layer Bond Tensile Mechanical Properties of Ultra-High-Performance Concrete for 3D Printing
  62. Lin Yini, Yan Jiachuan, Sun Ming, Han Xiaoyu et al. (2024-10)
    Inter-Layer Cohesion in 3D Printed Concrete:
    The Role of Width-to-Height-Ratio in Modulating Transport Properties and Pore-Structure
  63. Althoey Fadi, Zaid Osama, Ahmed Bilal, Elhadi Khaled (2024-10)
    Impact of Double Hooked Steel-Fibers and Nano-Kaolin-Clay on Fresh Properties of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete
  64. Chen Yuning, Xia Kailun, Dong Enlai, Cao Ruilin et al. (2024-10)
    A Mechanical Characteristic Capture-Method Considering Printing-Configurations for Buildability-Modeling in Concrete 3D Printing
  65. Liu Chao, Banthia Nemkumar, Shi Yifan, Jia Zijian et al. (2024-09)
    Early-Age Shrinkage Mitigation and Quantitative Study on Water Loss Kinetics of 3D Printed Foam-Concrete Modified with Superabsorbent Polymers
  66. Liu Xuelin, Sheng Haitao, Feng Binqing, Zhao Piqi et al. (2024-09)
    Effect of Potassium and Sodium-Based Electrolyzed Water on the Rheological Properties and Structural Build-Up of 3D Printed Cement Composites
  67. Han Kang, Gu Fei, Yang Huashan, Tian Xinchen et al. (2024-09)
    PVA-Fiber-Reinforced Red Mud-Based Geopolymer for 3D Printing:
    Printability, Mechanical Properties and Microanalysis
  68. Sadeghzadeh Benam Shaghayegh, Sandalci Ilgin, Bundur Zeynep, Bebek Özkan (2024-09)
    Bio-Based Additives to Improve the Rheology of High-Volume Fly-Ash Cement-Based Mortar for 3D Printing
  69. Zhao Hongyu, Wang Yufei, Liu Xianda, Wang Xiangyu et al. (2024-08)
    Review on Solid Wastes Incorporated Cementitious Material Using 3D Concrete Printing-Technology
  70. Li Leo, Zhang Guang-Hu (2024-08)
    Feasibility of Underwater 3D Printing:
    Effects of Anti-Washout-Admixtures on Printability and Strength of Mortar
  71. Liu Xiongfei, Cai Huachong, Sun Yuhang, Wang Li et al. (2024-08)
    Spray-Based 3D Printed Foam-Concrete:
    Cooperative Optimization for Lightweight and High-Strength Performance
  72. Jiang Shangjin, Wang Yuntao, Hua Sudong, Yue Hongfei et al. (2024-08)
    Preparation and Performance Characterization of Low-Density 3D Printed Expanded Perlite-Foam-Concrete
  73. Liu Chao, Zhang Zedi, Jia Zijian, Cao Ruilin et al. (2024-07)
    Quantitative Characterization of Bubble-Stability of Foam-Concrete Throughout Extrusion-Process:
    From Yield-Stress , Viscosity and Surface Tension Point of View
  74. Luo Qiling, Yu Ke-Ke, Long Wujian, Zheng Shuyi et al. (2024-07)
    Influence of Different Types of Superabsorbent Polymers on Fresh Mechanical Properties and Inter-Layer Adhesion of 3D Printed Concrete
  75. Shen Jing, Li Yujia, Zhang Xiaoman, Li Yangbo et al. (2024-06)
    Three-Dimensional Printable Concrete by an Ultra-Thin Nozzle and Fully-Sealed Extrusion
  76. Parmigiani Silvia, Falliano Devid, Moro Sandro, Ferro Giuseppe et al. (2024-06)
    3D Printed Multi-Functional Foamed Concrete Building Components:
    Material-Properties, Component Design, and 3D Printing Application
  77. Zhuang Zicheng, Xu Fengming, Ye Junhong, Hu Nan et al. (2024-06)
    A Comprehensive Review of Sustainable Materials and Tool-Path-Optimization in 3D Concrete Printing
  78. Chen Wenguang, Ye Junhong, Jiang Fangming, Fediuk Roman et al. (2024-05)
    Printability Region for 3D Printable Engineered Cementitious Composites
  79. Gu Yucun, Zheng Shuyi, Ma Hongyan, Long Wujian et al. (2024-05)
    Effect of Absorption Kinetics of Superabsorbent Polymers on Printability and Inter-Layer Bond of 3D Printing Concrete
  80. Oulkhir Fatima, Akhrif Iatimad, Jai Mostapha (2024-05)
    3D Concrete Printing Success:
    An Exhaustive Diagnosis and Failure-Modes-Analysis
  81. Boddepalli Uday, Gandhi Indu, Panda Biranchi (2024-05)
    Synergistic Effect of Fly-Ash and Polyvinyl-Alcohol-Fibers in Improving Stability, Rheology, and Mechanical Properties of 3D Printable Foam-Concrete
  82. Bodur Burak, Mecit Işık Muhammet, Benli Ahmet, Bayrak Barış et al. (2024-05)
    Durability of Green Rubberized 3D Printed Lightweight Cement Composites Reinforced with Micro-Attapulgite and Micro-Steel-Fibers:
    Printability and Environmental Perspective
  83. Wei Ying, Han Song, Yu Shiwei, Chen Ziwei et al. (2024-05)
    Parameter Impact on 3D Concrete Printing from Single to Multi-Layer Stacking
  84. Chen Yuxuan, Zhang Longfei, Wei Kai, Gao Huaxing et al. (2024-04)
    Rheology-Control and Shrinkage-Mitigation of 3D Printed Geopolymer Concrete Using Nano-Cellulose and Magnesium-Oxide
  85. Zaid Osama, Ouni Mohamed (2024-04)
    Advancements in 3D Printing of Cementitious Materials:
    A Review of Mineral Additives, Properties, and Systematic Developments
  86. Xia Kailun, Chen Yuning, Chen Yu, Jia Zijian et al. (2024-04)
    Understanding and Modeling the Plastic Deformation of 3D Printed Concrete Based on Viscoelastic Creep Behavior
  87. Geng Songyuan, Mei Liu, Cheng Boyuan, Luo Qilong et al. (2024-03)
    Revolutionizing 3D Concrete Printing:
    Leveraging Random-Forest-Model for Precise Printability and Rheological Prediction
  88. Jia Zijian, Zhou Mengting, Chen Yu, Wang Wei et al. (2024-03)
    Effect of Steel-Fiber Shape and Content on Printability, Microstructure and Mechanical Properties of 3D Printable High-Strength Cementitious Materials
  89. Zandifaez Peyman, Shen Zhenglai, Sorgenfrei Reese, Li Yucen et al. (2024-03)
    Pathways to Formulate Lightweight and Ultra-Lightweight 3D Printable Cementitious Composites
  90. Niu Geng, Liu Chao, Jia Lutao, Ma Lei et al. (2024-03)
    Preparation and Performance-Analysis of 3D Printed Lightweight EPS-Concrete:
    Insights from the Excess-Paste-Theory
  91. Wang Xiaonan, Li Wengui, Guo Yipu, Kashani Alireza et al. (2024-02)
    Concrete 3D Printing Technology in Sustainable Construction:
    A Review on Raw Materials, Concrete Types and Performances
  92. Geng Songyuan, Luo Qiling, Cheng Boyuan, Li Lixao et al. (2024-02)
    Intelligent Multi-Objective Optimization of 3D Printing Low-Carbon Concrete for Multi-Scenario Requirements
  93. Şahin Hatice, Mardani Ali, Beytekin Hatice (2024-02)
    Effect of Silica-Fume Utilization on Structural Build-Up, Mechanical and Dimensional Stability Performance of Fiber-Reinforced 3D Printable Concrete
  94. Jia Lutao, Jia Zijian, Zhang Zedi, Tang Zhenzhong et al. (2024-02)
    Effect of Recycled Brick-Powder with Various Particle-Features on Early-Age Hydration, Water-State, and Rheological Properties of Blended Cement-Paste in the Context of 3D Printing
  95. Gamage Kumari, Fawzia Sabrina, Zahra Tatheer, Teixeira Muge et al. (2024-02)
    Advancement in Sustainable 3D Concrete Printing:
    A Review on Materials, Challenges, and Current Progress in Australia
  96. Nóbrega Anna, Queiroz Junior Cleanto, Souza Wendell, Cabral Kleber et al. (2024-02)
    Computational Modeling for Structural Element Analysis Using Cement Composites in 3D Printing
  97. Zhou Longfei, Gou Mifeng, Ji Jiankai, Hou Xinran et al. (2024-02)
    Durability and Hardened Properties of 3D Printed Concrete Containing Bauxite-Tailings
  98. Özalp Fatih (2024-01)
    Mechanical Behavior and Permeability Properties of Sustainable and High-Performance Anisotropic Three-Dimensional Printable Concrete
  99. Zhang Nan, Sanjayan Jay (2024-01)
    Quick Nozzle Mixing Technology for 3D Printing Foam-Concrete
  100. Dai Pengfei, Lyu Qifeng, Zong Meirong, Zhu Pinghua (2024-01)
    Effect of Waste-Plastic-Fibers on the Printability and Mechanical Properties of 3D Printed Cement Mortar
  101. Lucen Hao, Long Li, Shipeng Zhang, Huanghua Zhang et al. (2023-12)
    The Synergistic Effect of Greenhouse Gas CO2 and Silica-Fume on the Properties of 3D Printed Mortar
  102. Li Feng, Zhang Rongrong, Zhou Siqi, Zhu Xingyi (2023-12)
    Printability and Hardening Performance of Three-Dimensionally-Printed Geopolymer Based on Lunar Regolith Simulant for Automated Construction of Lunar Infrastructure
  103. Carvalho Ivo, Melo Abcael, Melo Carlos, Brito Mateus et al. (2023-12)
    Evaluation of the Effect of Rubber-Waste-Particles on the Rheological and Mechanical Properties of Cementitious Materials for 3D Printing
  104. Ambily Parukutty, Rajendran Neeraja, Kaliyavaradhan Senthil (2023-11)
    Mix-Design, Optimization and Performance-Evaluation of Extrusion-Based 3D Printable Concrete
  105. Li Long, Hao Lucen, Li Xiao-Sheng, Xiao Jianzhuang et al. (2023-11)
    Development of CO2-Integrated 3D Printing Concrete
  106. Zou Mengtong, Liu Chuanbei, Zhang Keying, Li Wuqian et al. (2023-11)
    Evaluation and Control of Printability and Rheological Properties of 3D Printed Rubberized Concrete
  107. Lyu Qifeng, Dai Pengfei, Chen Anguo (2023-10)
    Mechanical Strengths and Optical Properties of Translucent Concrete Manufactured by Mortar-Extrusion 3D Printing with Polymethyl-Methacrylate Fibers
  108. Zafar Muhammad, Bakhshi Amir, Hojati Maryam (2023-10)
    Printability and Shape Fidelity Evaluation of Self-Reinforced Engineered Cementitious Composites
  109. Zhu Lingli, Yao Jie, Zhao Yu, Ruan Wenqiang et al. (2023-09)
    Printability and Early Mechanical Properties of Material-Composition Modified 3D Printing Engineered Cementitious Composites Based on the Response-Surface-Methodology
  110. Overmeir Anne, Šavija Branko, Bos Freek, Schlangen Erik (2023-08)
    3D Printable Strain-Hardening Cementitious Composites (3DP-SHCC):
    Tailoring Fresh and Hardened State Properties
  111. Lu Bing, Li Hongliang, Wong Teck, Qian Shunzhi (2023-08)
    Development of a Functional Cementitious Mixture with Expanded Graphite for Automated Spray Construction
  112. Geng Songyuan, Long Wujian, Luo Qiling, Fu Junen et al. (2023-07)
    Intelligent Prediction of Dynamic Yield-Stress in 3D Printing Concrete Based on Machine Learning
  113. Tu Haidong, Wei Zhenyun, Bahrami Alireza, Kahla Nabil et al. (2023-06)
    Recent Advancements and Future Trends in 3D Printing Concrete Using Waste-Materials
  114. Daher Jana, Kleib Joelle, Benzerzour Mahfoud, Abriak Nor-Edine et al. (2023-06)
    The Development of Soil-Based 3D Printable Mixtures:
    A Mix-Design Methodology and a Case Study
  115. Shenawa Amaal, Karoti Poonam (2023-06)
    3D Printing in Construction, Mixture Characteristics, Strength, and Thermal Performance-Review
  116. Liu Chao, Zhang Yamei, Banthia Nemkumar (2023-05)
    Unveiling Pore Formation and Its Influence on Micromechanical Property and Stress-Distribution of 3D Printed Foam-Concrete Modified with Hydroxypropyl-Methylcellulose and Silica-Fume
  117. Bhushan Jindal Bharat, Jangra Parveen (2023-05)
    3D Printed Concrete:
    A Comprehensive Review of Raw Material’s Properties, Synthesis, Performance, and Potential Field Applications
  118. Razzaghian Ghadikolaee Mehrdad, Cerro-Prada Elena, Pan Zhu, Korayem Asghar (2023-04)
    Nanomaterials as Promising Additives for High-Performance 3D Printed Concrete:
    A Critical Review
  119. Cruz Gil, Dizon John, Farzadnia Nima, Zhou Hongyu et al. (2023-04)
    Performance, Applications, and Sustainability of 3D Printed Cement and Other Geomaterials
  120. Geng Songyuan, Luo Qiling, Liu Kun, Li Yunchao et al. (2023-02)
    Research Status and Prospect of Machine Learning in Construction 3D Printing
  121. Liu Qiang, Jiang Quan, Zhou Zhenhua, Xin Jie et al. (2023-02)
    The Printable and Hardened Properties of Nano-Calcium Carbonate with Modified Polypropylene-Fibers for Cement-Based 3D Printing
  122. Pasupathy Kirubajiny, Ramakrishnan Sayanthan, Sanjayan Jay (2023-01)
    3D Concrete Printing of Eco-Friendly Geopolymer Containing Brick Waste
  123. Diniz Hugo, Martinelli Antônio, Cabral Kleber, Ferreira Ruan et al. (2023-01)
    Synergistic Effects of the Use of Metakaolin, Sand and Water on the Properties of Cementitious Composites for 3D Printing
  124. Boddepalli Uday, Gandhi Indu, Panda Biranchi (2022-12)
    Stability of Three-Dimensional Printable Foam-Concrete as Function of Surfactant Characteristics
  125. Liu Qiang, Jiang Quan, Huang Mojia, Xin Jie et al. (2022-10)
    The Fresh and Hardened Properties of 3D Printing Cement-Base Materials with Self-Cleaning Nano-TiO2:
    An Exploratory Study
  126. Deng Zhicong, Jia Zijian, Zhang Chao, Wang Zhibin et al. (2022-10)
    3D Printing Lightweight Aggregate Concrete Prepared with Shell-Packing-Aggregate Method:
    Printability, Mechanical Properties and Pore-Structure
  127. Liu Chao, Chen Yuning, Zhang Zedi, Niu Geng et al. (2022-10)
    Study of the Influence of Sand on Rheological Properties, Bubble Features and Buildability of Fresh Foamed Concrete for 3D Printing
  128. Boddepalli Uday, Panda Biranchi, Gandhi Indu (2022-09)
    Rheology and Printability of Portland-Cement-Based Materials:
    A Review
  129. Chen Yuning, Zhang Yamei, Xie Yudong, Zhang Zedi et al. (2022-09)
    Unraveling Pore-Structure Alternations in 3D Printed Geopolymer Concrete and Corresponding Impacts on Macro-Properties
  130. Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-09)
    3D Printing Concrete with Recycled Coarse Aggregates:
    The Influence of Pore-Structure on Inter-Layer Adhesion
  131. Wang Zhibin, Jia Lutao, Deng Zhicong, Zhang Chao et al. (2022-08)
    Bond Behavior Between Steel-Bars and 3D Printed Concrete:
    Effect of Concrete Rheological Property, Steel-Bar Diameter and Paste-Coating
  132. Wang Li, Xiao Wei, Wang Qiao, Jiang Hailong et al. (2022-07)
    Freeze-Thaw-Resistance of 3D Printed Composites with Desert Sand
  133. Nodehi Mehrab, Aguayo Federico, Nodehi Shahab, Gholampour Aliakbar et al. (2022-07)
    Durability Properties of 3D Printed Concrete
  134. Pasupathy Kirubajiny, Ramakrishnan Sayanthan, Sanjayan Jay (2022-07)
    Enhancing the Properties of Foam-Concrete 3D Printing Using Porous Aggregates
  135. Pasupathy Kirubajiny, Ramakrishnan Sayanthan, Sanjayan Jay (2022-06)
    Fresh and Hardened Properties of 3D Printable Foam-Concrete Containing Porous Aggregates
  136. Yuan Qiang, Xie Zonglin, Yao Hao, Huang Tingjie et al. (2022-06)
    Effect of Polyacrylamide on the Workability and Inter-Layer Interface Properties of 3D Printed Cementitious Materials
  137. Liu Chao, Chen Yuning, Xiong Yuanliang, Jia Lutao et al. (2022-06)
    Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Buildability of 3D Printing Foam-Concrete:
    From Water State and Flocculation Point of View
  138. Jin Yuan, Xu Jiabin, Li Yali, Zhao Zhihui et al. (2022-06)
    Rheological Properties, Shape Stability and Compressive Strength of 3D Printed Colored Cement Composites Modified by Needle-Like Pigment
  139. Wang Xianggang, Jia Lutao, Jia Zijian, Zhang Chao et al. (2022-06)
    Optimization of 3D Printing Concrete with Coarse Aggregate via Proper Mix-Design and Printing-Process
  140. Geng Zifan, Pan Hao, Zuo Wenqiang, She Wei (2022-05)
    Functionally Graded Lightweight Cement-Based Composites with Outstanding Mechanical Performances via Additive Manufacturing
  141. Ramakrishnan Sayanthan, Kanagasuntharam Sasitharan, Sanjayan Jay (2022-05)
    In-Line Activation of Cementitious Materials for 3D Concrete Printing
  142. Liu Huawei, Liu Chao, Bai Guoliang, Wu Yiwen et al. (2022-04)
    Influence of Pore-Defects on the Hardened Properties of 3D Printed Concrete with Coarse Aggregate
  143. Liu Qiang, Jiang Quan, Huang Mojia, Xin Jie et al. (2022-03)
    Modifying Effect of Anionic Polyacrylamide Dose for Cement-Based 3DP Materials:
    Printability and Mechanical Performance Tests
  144. Chen Mingxu, Li Haisheng, Yang Lei, Wang Shoude et al. (2022-03)
    Rheology and Shape-Stability-Control of 3D Printed Calcium-Sulphoaluminate-Cement Composites Containing Paper-Milling-Sludge
  145. Yalçınkaya Çağlar (2022-03)
    Influence of Hydroxypropyl Methylcellulose Dosage on the Mechanical Properties of 3D Printable Mortars with and without Fiber-Reinforcement
  146. Wang Li, Yang Yu, Yao Liang, Ma Guowei (2022-02)
    Interfacial Bonding Properties of 3D Printed Permanent Formwork with the Post-Casted Concrete
  147. Chen Yuning, Jia Lutao, Liu Chao, Zhang Zedi et al. (2022-01)
    Mechanical Anisotropy Evolution of 3D Printed Alkali-Activated Materials with Different GGBFS-FA Combinations
  148. Liu Chao, Xiong Yuanliang, Chen Yuning, Jia Lutao et al. (2022-01)
    Effect of Sulphoaluminate Cement on Fresh and Hardened Properties of 3D Printing Foamed Concrete
  149. Şahin Hatice, Mardani Ali (2021-12)
    Assessment of Materials, Design Parameters and Some Properties of 3D Printing Concrete Mixtures:
    A State of the Art Review
  150. Yao Hao, Xie Zonglin, Li Zemin, Huang Chuhan et al. (2021-11)
    The Relationship Between the Rheological Behavior and Inter-Layer Bonding Properties of 3D Printing Cementitious Materials with the Addition of Attapulgite
  151. Liu Hanqiu, Egbe King-James, Wang Haipeng, Nazar Ali et al. (2021-11)
    A Numerical Study on 3D Printed Cementitious Composites Mixes Subjected to Axial Compression

BibTeX
@article{liu_wang_chen_zhan.2021.IoHMaSFoSRPaPo3PFC,
  author            = "Chao Liu and Xianggang Wang and Yuning Chen and Chao Zhang and Lei Ma and Zhicong Deng and Chun Chen and Yamei Zhang and Jinlong Pan and Nemkumar Banthia",
  title             = "Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete",
  doi               = "10.1016/j.cemconcomp.2021.104158",
  year              = "2021",
  journal           = "Cement and Concrete Composites",
  volume            = "122",
}
Formatted Citation

C. Liu, “Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete”, Cement and Concrete Composites, vol. 122, 2021, doi: 10.1016/j.cemconcomp.2021.104158.

Liu, Chao, Xianggang Wang, Yuning Chen, Chao Zhang, Lei Ma, Zhicong Deng, Chun Chen, Yamei Zhang, Jinlong Pan, and Nemkumar Banthia. “Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete”. Cement and Concrete Composites 122 (2021). https://doi.org/10.1016/j.cemconcomp.2021.104158.