Skip to content

Juxtaposing Fresh Material-Characterisation-Methods for Buildability-Assessment of 3D Printable Cementitious Mortars (2021-04)

10.1016/j.cemconcomp.2021.104024

 Bos Freek,  Kruger Jacques,  Lucas Sandra,  van Zijl Gideon
Journal Article - Cement and Concrete Composites, Vol. 120

Abstract

Both industry and academia are rapidly developing processes, materials, and projects to explore the potential of extrusion-layering additive manufacturing of cementitious materials, generally known as 3D concrete printing (3DCP). Because the lack of supportive formwork makes objects prone to failure during printing, a key aspect remains the so-called ‘buildability’, a qualitative descriptor to indicate the resistance against such failures. Obviously, the material characteristics of the applied print mortar are an important (although not sole) parameter to determine buildability. However, it is not yet clear which material properties are the most suitable, and how they should be determined experimentally. In literature, a range of approaches has been suggested, but comparative studies are very few in number and limited in scope. This paper presents a juxtaposition of fresh material characterisation methods by subjecting four different mortars to a range of tests related to buildability, including rotational rheometry, unconfined uniaxial compression tests, direct shear tests, and ultrasonic wave transmission tests. For reference, some hardened state properties were also determined, and a printing trial was performed on one mixture. Significant differences between the mixtures were found, including different development characteristics, even though three of the four mixtures were composed of different proportions of the same 4 dry materials. Furthermore, it was shown that strength values from different experiments could only be correlated by assuming significant friction angles associated with Mohr-Coulomb failure behaviour. We propose this could be established relatively easily through a novel method, by combining rheometry-shear and uniaxial compression test results. The data seem to indicate this would be a valid approach. Normalized but physically different parameters, such as compressive strength and pulse velocity, could not be consistently correlated. Their proportions are time and mixture-dependent, which adds significant complexity to quality control and the development of generalized methods to characterize and compare buildability of cementitious mortars.

34 References

  1. Borg Costanzi Christopher, Ahmed Zeeshan, Schipper Roel, Bos Freek et al. (2018-07)
    3D Printing Concrete on Temporary Surfaces:
    The Design and Fabrication of a Concrete Shell Structure
  2. Bos Freek, Wolfs Robert, Salet Theo (2020-06)
    CCR Digital Concrete 2020 SI:
    Editorial
  3. Ducoulombier Nicolas, Carneau Paul, Mesnil Romain, Demont Léo et al. (2020-07)
    The Slug-Test:
    In-Line-Assessment of Yield-Stress for Extrusion-Based Additive Manufacturing
  4. Figueiredo Stefan, Overmeir Anne, Nefs Karsten, Schlangen Erik et al. (2020-07)
    Quality-Assessment of Printable Strain-Hardening Cementitious Composites Manufactured in Two Different Printing Facilities
  5. Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2019-03)
    An Approach to Develop Printable Strain-Hardening Cementitious Composites
  6. Jacquet Yohan, Picandet Vincent, Rangeard Damien, Perrot Arnaud (2020-07)
    Gravity-Driven Tests to Assess Mechanical Properties of Printable Cement-Based Materials at Fresh State
  7. Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2020-01)
    Yield-Stress-Criteria to Assess the Buildability of 3D Concrete Printing
  8. Jayathilakage Roshan, Sanjayan Jay, Rajeev Pathmanathan (2019-01)
    Direct-Shear-Test for the Assessment of Rheological Parameters of Concrete for 3D Printing Applications
  9. Jeong Hoseong, Han Sun-Jin, Choi Seung-Ho, Lee Yoon et al. (2019-02)
    Rheological Property Criteria for Buildable 3D Printing Concrete
  10. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  11. Kruger Jacques, Cho Seung, Zeranka Stephan, Vintila Cristian et al. (2019-12)
    3D Concrete Printer Parameter Optimization for High-Rate Digital Construction Avoiding Plastic Collapse
  12. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    3D Concrete Printing:
    A Lower-Bound Analytical Model for Buildability-Performance-Quantification
  13. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    An Ab-Inito Approach for Thixotropy Characterisation of Nano-Particle-Infused 3D Printable Concrete
  14. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-09)
    Quantifying Constructability Performance of 3D Concrete Printing via Rheology-Based Analytical Models
  15. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2020-04)
    A Rheology-Based Quasi-Static Shape-Retention-Model for Digitally Fabricated Concrete
  16. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  17. Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
    Extrusion-Based Additive Manufacturing with Cement-Based Materials:
    Production Steps, Processes, and Their Underlying Physics
  18. Moeini Mohammad, Hosseinpoor Masoud, Yahia Ammar (2020-05)
    Effectiveness of the Rheometric Methods to Evaluate the Build-Up of Cementitious Mortars Used for 3D Printing
  19. Nerella Venkatesh, Krause Martin, Mechtcherine Viktor (2019-11)
    Direct Printing-Test for Buildability of 3D Printable Concrete Considering Economic Viability
  20. Panda Biranchi, Lim Jian, Tan Ming (2019-02)
    Mechanical Properties and Deformation Behavior of Early-Age Concrete in the Context of Digital Construction
  21. Panda Biranchi, Tan Ming (2018-03)
    Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing
  22. Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
    Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques
  23. Reiter Lex, Wangler Timothy, Anton Ana-Maria, Flatt Robert (2020-05)
    Setting-on-Demand for Digital Concrete:
    Principles, Measurements, Chemistry, Validation
  24. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  25. Schröfl Christof, Nerella Venkatesh, Mechtcherine Viktor (2018-09)
    Capillary Water Intake by 3D Printed Concrete Visualised and Quantified by Neutron Radiography
  26. Suiker Akke (2018-01)
    Mechanical Performance of Wall Structures in 3D Printing Processes:
    Theory, Design Tools and Experiments
  27. Suiker Akke, Wolfs Robert, Lucas Sandra, Salet Theo (2020-06)
    Elastic Buckling and Plastic Collapse During 3D Concrete Printing
  28. Wangler Timothy, Lloret-Fritschi Ena, Reiter Lex, Hack Norman et al. (2016-10)
    Digital Concrete:
    Opportunities and Challenges
  29. Wolfs Robert, Bos Freek, Salet Theo (2018-06)
    Correlation Between Destructive Compression Tests and Non-Destructive Ultrasonic Measurements on Early-Age 3D Printed Concrete
  30. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  31. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  32. Wolfs Robert, Bos Freek, Salet Theo (2019-06)
    Triaxial Compression Testing on Early-Age Concrete for Numerical Analysis of 3D Concrete Printing
  33. Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
    Fresh Properties of a Novel 3D Printing Concrete Ink
  34. Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
    Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction

75 Citations

  1. Fasihi Ali, Libre Nicolas (2025-11)
    Tip Penetration Test for Rapid in-Line Assessment of Static Yield Stress During 3D Concrete Printing Process
  2. Lim Sean, Lee Junghyun, Bawarith Nuran, Paul Suvash et al. (2025-11)
    The Efficacy of Self-Curing Agents on Enhanced Internal Curing and Accelerated Carbonation with CO2-Steam Integrated 3D Concrete Printing
  3. González-Aviña J., Hosseinpoor Masoud, Yahia Ammar, Kohandelnia Mojtaba et al. (2025-10)
    Anionic Biopolymers to Enhance Concrete Rheological Properties for 3D Printing Applications
  4. Haripan Vislavath, Senthilnathan Shanmugaraj, Santhanam Manu, Raphael Benny (2025-10)
    Printability Assessment of Concrete 3D Printed Elements with Recycled Fine Aggregate
  5. Xiahou Xiaer, Ding Xingyuan, Yu Ke-Ke, Lu Cong (2025-08)
    From Waste to Strength:
    Sustainable Valorization of Modified Recycled PET Fibers for Rheological Control and Performance Enhancement in 3D Printed Concrete
  6. Harbouz Ilhame, Yahia Ammar, Rozière Emmanuel, Loukili Ahmed (2025-07)
    Squeeze Test:
    A Toolkit for Assessing the Printability of Stiff Cement-Based Materials.
  7. Fasihi Ali, Libre Nicolas (2025-05)
    Towards Accurate In-Situ Static Yield Stress Measurement for 3D Concrete Printing:
    A Study on Novel Fast Penetration Test
  8. Chen Wei, Pan Jinlong, Zhu Binrong, Han Jinsheng et al. (2025-03)
    Nonlinear Predictive Modeling of Building Rates Incorporating Filament Compression Deformations in 3D Printed Geopolymer Concrete
  9. Araújo Rísia, Martinelli Antônio, Cabral Kleber, Nunes Ueslei et al. (2025-03)
    Effect of Lightweight Expanded Clay Aggregate (LECA) On the Printability of Cementitious Compositions for 3D Printing
  10. Shen Qiang, Sun Dongpu, Lu Chenyu, Zhang Zhigang et al. (2025-02)
    Fresh and Anisotropic-Mechanical Properties of Polyoxymethylene Fibers Reinforced 3D Printable Cementitious Composites
  11. Liu Xiongfei, Li Chuang, Guo Pei, Wang Li et al. (2025-02)
    Spray-Based 3D Printed Tunnel Slag Concrete:
    Evaluation for Printability and Mechanical Performance
  12. Sando Mona, Stephan Dietmar (2025-02)
    The Role of Mixing Sequence in Shaping the 3D-Printability of Geopolymers
  13. Tarhan Yeşim, Tarhan İsmail, Şahin Remzi (2024-12)
    Comprehensive Review of Binder Matrices in 3D Printing Construction:
    Rheological Perspectives
  14. Luo Surong, Jin Wenhao, Wu Weihong, Zhang Kaijian (2024-11)
    Rheological and Mechanical Properties of Polyformaldehyde-Fiber-Reinforced 3D Printed High-Strength Concrete with the Addition of Fly-Ash
  15. Bang Jin, Yim Hong (2024-10)
    Unbonded Inter-Layer Evaluation in Freshly 3D Printed Concrete Using Electrical Resistivity Measurements
  16. Lim Sean, Tan Ming (2024-10)
    A Rheological Model for Concrete Additive Manufacturing
  17. Chajec Adrian, Šavija Branko (2024-09)
    The Effect of Using Surface Functionalized Granite-Powder-Waste on Fresh Properties of 3D Printed Cementitious Composites
  18. Rehman Atta, Kang Manmin, Basha Shaik, Choi Kichang et al. (2024-09)
    Knife-Cut-Test of Concrete:
    The Introduction of a New Test-Method for Measurement of the Structural Build-Up of 3D Concrete Printing-Materials
  19. Giwa Ilerioluwa, Kazemian Ali, Gopu Vijaya, Rupnow Tyson (2024-07)
    A Compressive Load-Bearing-Analysis of 3D Printed Circular Elements
  20. Liu Zhenbang, Li Mingyang, Liu Zhixin, Wong Teck (2024-07)
    Effects of Vinyl-Acetate and Ethylene-Copolymer on Printing and Mechanical Performances of 3D Printing Cementitious Materials
  21. Šahmenko Genādijs, Puzule Līga, Sapata Alise, Šlosbergs Pēteris et al. (2024-06)
    Gypsum-Cement-Pozzolan Composites for 3D Printing:
    Properties and Life Cycle Assessment
  22. Birru Bizu, Rehman Atta, Kim Jung-Hoon (2024-06)
    Comparative Analysis of Structural Build-Up in One-Component Stiff and Two-Component Shotcrete-Accelerated Set-on-Demand Mixtures for 3D Concrete Printing
  23. Gu Yucun, Zheng Shuyi, Ma Hongyan, Long Wujian et al. (2024-05)
    Effect of Absorption Kinetics of Superabsorbent Polymers on Printability and Inter-Layer Bond of 3D Printing Concrete
  24. Balasubramanian Dhayalini, Sasikumar Athira, Govindaraj Vishnuvarthanan (2024-04)
    Study on Criticality of Coarse Aggregate Content on Early-Age Properties of 3D Printable Concrete
  25. Kompella Sriram, Marcucci Andrea, Monte Francesco, Levi Marinella et al. (2024-04)
    Fracture Behavior of Three-Dimensional-Printable Cementitious Mortars in Very Early-Ages and Hardened States
  26. Ramesh Akilesh, Rajeev Pathmanathan, Sanjayan Jay (2024-02)
    Bond-Slip Behavior of Textile-Reinforcement in 3D Printed Concrete
  27. Khan Shoukat, İlcan Hüseyin, Imram Ramsha, Aminipour Ehsan et al. (2024-01)
    The Impact of Nozzle-Diameter and Printing Speed on Geopolymer-Based 3D Printed Concrete Structures:
    Numerical Modeling and Experimental Validation
  28. Dulaj Albanela, Salet Theo, Lucas Sandra (2024-01)
    A Study of the Effects of MWCNTs on the Fresh and Hardened State Properties of 3D Printable Concrete
  29. Rehman Atta, Kim Ik-Gyeom, Kim Jung-Hoon (2024-01)
    Towards Full Automation in 3D Concrete Printing Construction:
    Development of an Automated and In-Line Test-Method for In-Situ Assessment of Structural Build-Up and Quality of Concrete
  30. Fasihi Ali, Libre Nicolas (2024-01)
    From Pumping to Deposition:
    A Comprehensive Review of Test-Methods for Characterizing Concrete-Printability
  31. Rocha Douglas, Faria Paulina, Lucas Sandra (2023-12)
    Additive Manufacturing of Earth-Based Materials:
    A Literature Review on Mortar-Composition, Extrusion, and Processing Earth
  32. Wang Yang, Qiu Liu-Chao, Chen Song-Gui, Liu Yi (2023-12)
    3D Concrete Printing in Air and Under Water:
    A Comparative Study on the Buildability and Inter-Layer Adhesion
  33. Zhu Lingli, Yao Jie, Zhao Yu, Ruan Wenqiang et al. (2023-09)
    Printability and Early Mechanical Properties of Material-Composition Modified 3D Printing Engineered Cementitious Composites Based on the Response-Surface-Methodology
  34. Chang Ze, Liang Minfei, He Shan, Schlangen Erik et al. (2023-09)
    Lattice-Modelling of Early-Age Creep of 3D Printed Segments with the Consideration of Stress-History
  35. Liu Zhenbang, Li Mingyang, Quah Tan, Wong Teck et al. (2023-09)
    Comprehensive Investigations on the Relationship Between the 3D Concrete Printing Failure Criterion and Properties of Fresh-State Cementitious Materials
  36. Rehman Atta, Perrot Arnaud, Birru Bizu, Kim Jung-Hoon (2023-09)
    Recommendations for Quality-Control in Industrial 3D Concrete Printing Construction with Mono-Component Concrete:
    A Critical Evaluation of Ten Test-Methods and the Introduction of the Performance-Index
  37. Overmeir Anne, Šavija Branko, Bos Freek, Schlangen Erik (2023-08)
    3D Printable Strain-Hardening Cementitious Composites (3DP-SHCC):
    Tailoring Fresh and Hardened State Properties
  38. Pedrosa Ana, Gaspar Florindo (2023-08)
    Rheology-Assessment of Mortar-Materials for Additive Manufacturing
  39. Soares Augusto, Costa Hugo, Carmo Ricardo, Rodrigues Ana et al. (2023-08)
    Comprehensive Design Methodology for 3D Printing Mortars
  40. Harbouz Ilhame, Rozière Emmanuel, Loukili Ahmed, Yahia Ammar (2023-07)
    Effect of the Structuration-Rate on Dimensional Stability and Mechanical Performance of 3D Printed Mortars
  41. Robens-Radermacher Annika, Unger Jörg, Mezhov Alexander, Schmidt Wolfram (2023-07)
    Temperature-Dependent Modelling Approach for Early-Age Behavior of Printable Mortars
  42. Pott Ursula, Jakob Cordula, Wolf Julian, Stephan Dietmar (2023-06)
    Comparison of Physical and Physico-Chemical Methods for 3D Printing Application with the Focus on the Unconfined Uniaxial Compression-Test
  43. Fernandez Letízia, Caldas Lucas, Mendoza Reales Oscar (2023-05)
    Environmental Evaluation of 3D Printed Concrete Walls Considering the Life Cycle Perspective in the Context of Social Housing
  44. Liu Zhenbang, Li Mingyang, Moo Guo, Kobayashi Hitoshi et al. (2023-05)
    Effect of Nano-Structured Silica-Additives on the Extrusion-Based 3D Concrete Printing Application
  45. Diab Zeinab, Do Duc, Rémond Sébastien, Hoxha Dashnor (2023-04)
    Probabilistic Prediction of Structural Failure During 3D Concrete Printing Processes
  46. Rajeev Pathmanathan, Ramesh Akilesh, Navaratnam Satheeskumar, Sanjayan Jay (2023-04)
    Using Fiber Recovered from Face Mask Waste to Improve Printability in 3D Concrete Printing
  47. Tamimi Adil, Alqamish Habib, Khaldoune Ahlam, Alhaidary Haidar et al. (2023-03)
    Framework of 3D Concrete Printing Potential and Challenges
  48. Kaushik Sandipan, Sonebi Mohammed, Amato Giuseppina, Das Utpal et al. (2023-02)
    Optimization of Mix Proportion of 3D Printable Mortar Based on Rheological Properties and Material-Strength Using Factorial Design of Experiment
  49. Harbouz Ilhame, Yahia Ammar, Rozière Emmanuel, Loukili Ahmed (2023-02)
    Printing Quality-Control of Cement-Based Materials Under Flow and Rest-Conditions
  50. Chang Ze, Liang Minfei, Xu Yading, Wan Zhi et al. (2023-02)
    Early-Age Creep of 3D Printable Mortar:
    Experiments and Analytical Modelling
  51. Zhu Lingli, Yao Jie, Zhao Yu, Ruan Wenqiang et al. (2022-12)
    Effects of Composite Cementation System on Rheological and Working Performances of Fresh 3D Printable Engineered Cementitious Composites
  52. Li Zhengrong, Xing Wenjing, Sun Jingting, Feng Xiwen (2022-12)
    Multi-Scale Structural Characteristics and Heat-Moisture Properties of 3D Printed Building Walls:
    A Review
  53. Liu Xiongfei, Li Jixiang, Li Qi, Hou Gunayu (2022-11)
    Mechanical Performance Optimization in Spray-Based Three-Dimensional-Printed Mortar Using Carbon-Fiber
  54. Bhattacherjee Shantanu, Jain Smrati, Santhanam Manu (2022-11)
    Criticality of Binder-Aggregate Interaction for Buildability of 3D Printed Concrete Containing Limestone-Calcined-Clay
  55. Qaidi Shaker, Yahia Ammar, Tayeh B., Unis H. et al. (2022-10)
    3D Printed Geopolymer Composites:
    A Review
  56. Ivanova Irina, Mechtcherine Viktor, Reißig Silvia (2022-09)
    Vergleich von Bewertungsmethoden für die rheologischen Eigenschaften von frisch gedrucktem Beton
  57. Hass Lauri, Bos Freek, Salet Theo (2022-09)
    Characterizing the Bond Properties of Automatically Placed Helical Reinforcement in 3D Printed Concrete
  58. Pott Ursula, Wolf Christoph, Petryna Yuri, Stephan Dietmar (2022-09)
    Evaluation of the Unconfined Uniaxial Compression-Test to Study the Evolution of Apparent Printable Mortar-Properties During the Early-Age Transition-Regime
  59. Kruger Jacques, Mostert Jean-Pierre, Zijl Gideon (2022-06)
    A Strain-Based Constitutive Model Ensuring Aesthetic 3D Printed Concrete Structures:
    Limiting Differential Settlement of Filaments
  60. Lee Jin, Kim Jae (2022-06)
    Matric-Suction and Its Effect on the Shape Stability of 3D Printed Concrete
  61. Bhattacherjee Shantanu, Jain Smrati, Santhanam Manu (2022-06)
    Criticality of Microstructural Evolution at an Early-Age on the Buildability of an Accelerated 3D Printable Concrete
  62. Roussel Nicolas, Buswell Richard, Ducoulombier Nicolas, Ivanova Irina et al. (2022-06)
    Assessing the Fresh Properties of Printable Cement-Based Materials:
    High-Potential Tests for Quality-Control
  63. Ramakrishnan Sayanthan, Kanagasuntharam Sasitharan, Sanjayan Jay (2022-05)
    In-Line Activation of Cementitious Materials for 3D Concrete Printing
  64. Moeini Mohammad, Hosseinpoor Masoud, Yahia Ammar (2022-04)
    3D Printing of Cement-Based Materials with Adapted Buildability
  65. Liu Haoran, Ding Tao, Xiao Jianzhuang, Mechtcherine Viktor (2022-04)
    Buildability Prediction of 3D Printed Concrete at Early-Ages:
    A Numerical Study with Drucker-Prager-Model
  66. Zhou Ji, Hou Guanyu, Liu Xiongfei, Li Qi et al. (2022-04)
    Mechanical Properties of Spray-Based 3D Printed Micro-Cable-Reinforced Concrete
  67. Wangler Timothy, Pileggi Rafael, Gürel Şeyma, Flatt Robert (2022-03)
    A Chemical Process Engineering Look at Digital Concrete Processes:
    Critical Step Design, In-Line Mixing, and Scale-Up
  68. Ivanova Irina, Ivaniuk Egor, Bisetti Sameercharan, Nerella Venkatesh et al. (2022-03)
    Comparison Between Methods for Indirect Assessment of Buildability in Fresh 3D Printed Mortar and Concrete
  69. Manhanpally Najeeb, Saha Suman (2022-03)
    Benefit-Cost Analysis of 3D Printed Concrete Building
  70. Heever Marchant, Plessis Anton, Bester Frederick, Kruger Jacques et al. (2022-02)
    A Mechanistic Evaluation Relating Microstructural Morphology to a Modified Mohr-Griffith Compression-Shear Constitutive-Model for 3D Printed Concrete
  71. Mechtcherine Viktor, Fataei Shirin, Bos Freek, Buswell Richard et al. (2022-01)
    Digital Fabrication with Cement-Based Materials:
    Underlying Physics
  72. Yang Yekai, Wu Chengqing, Liu Zhongxian, Zhang Hai (2021-12)
    3D Printing Ultra-High-Performance Fiber-Reinforced Concrete under Triaxial Confining Loads
  73. Liu Chao, Zhang Rongfei, Liu Huawei, He Chunhui et al. (2021-11)
    Analysis of the Mechanical Performance and Damage Mechanism for 3D Printed Concrete Based on Pore-Structure
  74. Heever Marchant, Bester Frederick, Kruger Jacques, Zijl Gideon (2021-07)
    Mechanical Characterisation for Numerical Simulation of Extrusion-Based 3D Concrete Printing
  75. Tarhan Yeşim, Şahin Remzi (2021-05)
    Fresh and Rheological Performances of Air-Entrained 3D Printable Mortars

BibTeX
@article{bos_krug_luca_zijl.2021.JFMCMfBAo3PCM,
  author            = "Freek Paul Bos and Jacques Pienaar Kruger and Sandra Simaria de Oliveira Lucas and Gideon Pieter Adriaan Greeff van Zijl",
  title             = "Juxtaposing Fresh Material-Characterisation-Methods for Buildability-Assessment of 3D Printable Cementitious Mortars",
  doi               = "10.1016/j.cemconcomp.2021.104024",
  year              = "2021",
  journal           = "Cement and Concrete Composites",
  volume            = "120",
}
Formatted Citation

F. P. Bos, J. P. Kruger, S. S. de Oliveira Lucas and G. P. A. G. van Zijl, “Juxtaposing Fresh Material-Characterisation-Methods for Buildability-Assessment of 3D Printable Cementitious Mortars”, Cement and Concrete Composites, vol. 120, 2021, doi: 10.1016/j.cemconcomp.2021.104024.

Bos, Freek Paul, Jacques Pienaar Kruger, Sandra Simaria de Oliveira Lucas, and Gideon Pieter Adriaan Greeff van Zijl. “Juxtaposing Fresh Material-Characterisation-Methods for Buildability-Assessment of 3D Printable Cementitious Mortars”. Cement and Concrete Composites 120 (2021). https://doi.org/10.1016/j.cemconcomp.2021.104024.