Skip to content

Pore-Structure, Internal Relative Humidity, and Fiber-Orientation of 3D Printed Concrete with Polypropylene-Fiber and Their Relation with Shrinkage (2022-09)

10.1016/j.jobe.2022.105250

Ma Lei,  Zhang Qing,  Lombois-Burger Hélène,  Jia Zijian, Zhang Zedi,  Niu Geng,  Zhang Yamei
Journal Article - Journal of Building Engineering, Vol. 61

Abstract

The shrinkage properties and its mitigation strategies for 3D printed concrete (3DPC) are of great significance, especially for structural applications in construction. This study aims to understand the effect of polypropylene fiber (PP fiber) on the total shrinkage of 3DPC under drying. The rheological properties, mechanical properties, internal relative humidity (RH), pore size distribution and fiber orientation of 3DPC were investigated and compared with cast concrete. Without PP fiber, the total shrinkage of the printed specimens is similar to the cast ones. The addition of PP fiber reduces the total shrinkage for cast specimens more significantly than for printed specimens. This phenomenon is explained from both pore structure and fiber orientation perspectives. A lower total shrinkage is also observed on specimens cut along the printing direction when compared with those cut perpendicularly to the printing direction due to higher quantity of fiber oriented along the printing direction. The total shrinkage of 3DPC is found inversely proportional to the fiber orientation factor.

45 References

  1. Alchaar Aktham, Tamimi Adil (2020-10)
    Mechanical Properties of 3D Printed Concrete in Hot Temperatures
  2. Alghamdi Hussam, Nair Sooraj, Neithalath Narayanan (2019-02)
    Insights into Material-Design, Extrusion Rheology, and Properties of 3D Printable Alkali-Activated Fly-Ash-Based Binders
  3. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
    Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing
  4. Baz Bilal, Aouad Georges, Leblond Philippe, Mansouri Omar et al. (2020-05)
    Mechanical Assessment of Concrete:
    Steel Bonding in 3D Printed Elements
  5. Bos Freek, Menna Costantino, Pradena Mauricio, Kreiger Eric et al. (2022-03)
    The Realities of Additively Manufactured Concrete Structures in Practice
  6. Chen Mingxu, Yang Lei, Zheng Yan, Huang Yongbo et al. (2020-04)
    Yield-Stress and Thixotropy-Control of 3D Printed Calcium-Sulfoaluminate Cement Composites with Metakaolin Related to Structural Build-Up
  7. Ding Tao, Xiao Jianzhuang, Zou Shuai, Wang Yu (2020-06)
    Hardened Properties of Layered 3D Printed Concrete with Recycled Sand
  8. Geng Zifan, She Wei, Zuo Wenqiang, Lyu Kai et al. (2020-09)
    Layer-Interface Properties in 3D Printed Concrete:
    Dual Hierarchical Structure and Micromechanical Characterization
  9. Hambach Manuel, Volkmer Dirk (2017-02)
    Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste
  10. He Yawen, Zhang Yamei, Zhang Chao, Zhou Hongyu (2020-05)
    Energy-Saving-Potential of 3D Printed Concrete Building with Integrated Living Wall
  11. Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
    A Review of 3D Printed Concrete:
    Performance-Requirements, Testing Measurements and Mix-Design
  12. Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2020-01)
    Yield-Stress-Criteria to Assess the Buildability of 3D Concrete Printing
  13. Keita Emmanuel, Bessaies-Bey Hela, Zuo Wenqiang, Belin Patrick et al. (2019-06)
    Weak Bond Strength Between Successive Layers in Extrusion-Based Additive Manufacturing:
    Measurement and Physical Origin
  14. Khoshnevis Behrokh, Dutton Rosanne (1998-01)
    Innovative Rapid Prototyping Process Makes Large-Sized, Smooth-Surfaced Complex Shapes in a Wide Variety of Materials
  15. Kruger Jacques, Cho Seung, Zeranka Stephan, Vintila Cristian et al. (2019-12)
    3D Concrete Printer Parameter Optimization for High-Rate Digital Construction Avoiding Plastic Collapse
  16. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    An Ab-Inito Approach for Thixotropy Characterisation of Nano-Particle-Infused 3D Printable Concrete
  17. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  18. Ma Guowei, Li Yanfeng, Wang Li, Zhang Junfei et al. (2020-01)
    Real-Time Quantification of Fresh and Hardened Mechanical Property for 3D Printing Material by Intellectualization with Piezoelectric Transducers
  19. Ma Lei, Zhang Qing, Jia Zijian, Liu Chao et al. (2021-11)
    Effect of Drying Environment on Mechanical Properties, Internal RH and Pore-Structure of 3D Printed Concrete
  20. Mechtcherine Viktor, Grafe Jasmin, Nerella Venkatesh, Spaniol Erik et al. (2018-05)
    3D Printed Steel-Reinforcement for Digital Concrete Construction:
    Manufacture, Mechanical Properties and Bond Behavior
  21. Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2020-08)
    Plastic Shrinkage Cracking in 3D Printed Concrete
  22. Nematollahi Behzad, Vijay Praful, Sanjayan Jay, Nazari Ali et al. (2018-11)
    Effect of Polypropylene Fiber Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction
  23. Panda Biranchi, Bhagath Singh Gangapatnam, Unluer Cise, Tan Ming (2019-02)
    Synthesis and Characterization of One-Part Geopolymers for Extrusion-Based 3D Concrete Printing
  24. Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
    Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar
  25. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2018-11)
    Improving the 3D Printability of High-Volume Fly-Ash Mixtures via the Use of Nano-Attapulgite-Clay
  26. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2020-01)
    Investigation of the Properties of Alkali-Activated Slag Mixes Involving the Use of Nano-Clay and Nucleation-Seeds for 3D Printing
  27. Panda Biranchi, Unluer Cise, Tan Ming (2019-08)
    Extrusion and Rheology Characterization of Geopolymer Nanocomposites Used in 3D Printing
  28. Pegna Joseph (1997-02)
    Exploratory Investigation of Solid Freeform Construction
  29. Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
    Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques
  30. Pham Luong, Tran Jonathan, Sanjayan Jay (2020-04)
    Steel-Fiber-Reinforced 3D Printed Concrete:
    Influence of Fiber Sizes on Mechanical Performance
  31. Putten Jolien, Deprez Maxim, Cnudde Veerle, Schutter Geert et al. (2019-09)
    Microstructural Characterization of 3D Printed Cementitious Materials
  32. Putten Jolien, Snoeck Didier, Coensel R., Schutter Geert et al. (2020-12)
    Early-Age Shrinkage Phenomena of 3D Printed Cementitious Materials with Superabsorbent Polymers
  33. Rahul Attupurathu, Santhanam Manu (2020-02)
    Evaluating the Printability of Concretes Containing Lightweight Coarse Aggregates
  34. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
    3D Printable Concrete:
    Mixture-Design and Test-Methods
  35. Rahul Attupurathu, Sharma Abhishek, Santhanam Manu (2020-01)
    A Desorptivity-Based Approach for the Assessment of Phase Separation During Extrusion of Cementitious Materials
  36. Shahmirzadi Mohsen, Gholampour Aliakbar, Kashani Alireza, Ngo Tuan (2021-09)
    Shrinkage Behavior of Cementitious 3D Printing Materials:
    Effect of Temperature and Relative Humidity
  37. Shakor Pshtiwan, Nejadi Shami, Paul Gavin (2019-05)
    A Study into the Effect of Different Nozzles Shapes and Fiber-Reinforcement in 3D Printed Mortar
  38. Tran Mien, Cu Yen, Le Chau (2021-10)
    Rheology and Shrinkage of Concrete Using Polypropylene-Fiber for 3D Concrete Printing
  39. Weng Yiwei, Lu Bing, Li Mingyang, Liu Zhixin et al. (2018-09)
    Empirical Models to Predict Rheological Properties of Fiber-Reinforced Cementitious Composites for 3D Printing
  40. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  41. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
    Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete
  42. Yu Kequan, McGee Wesley, Ng Tsz, Zhu He et al. (2021-02)
    3D Printable Engineered Cementitious Composites:
    Fresh and Hardened Properties
  43. Yu Shiwei, Xia Ming, Sanjayan Jay, Yang Lin et al. (2021-07)
    Microstructural Characterization of 3D Printed Concrete
  44. Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
    A Review of the Current Progress and Application of 3D Printed Concrete
  45. Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
    Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete

58 Citations

  1. Sun Yan, Du Guoqiang, Deng Xiaowei, Qian Ye (2026-01)
    Enhancing Fiber Alignment and Tensile Properties of 3D-Printed Ultra-High Performance Strain-Hardening Cementitious Composites by Nozzle Channel Design
  2. Talukdar A., Belek Fialho Teixeira Müge, Fawzia Sabrina, Zahra Tatheer et al. (2026-01)
    Investigation on the Fresh and Mechanical Properties of Low Carbon 3D Printed Concrete Incorporating Sugarcane Bagasse Ash and Microfibers
  3. Xue Jia-Chen, Wang Wei-Chien, Lee Ming-Gin, Huang Chia-Yun et al. (2025-12)
    Effect of Aggregate-to-Binder Ratio on 3D Printed Concrete:
    Printability, Mechanics, and Shrinkage
  4. Liu Xiongfei, Wang Haonan, Chen Jinnan, Sun Yuhang et al. (2025-11)
    Fiber Orientation Control in Spray-Based 3D Printed Steel Fiber Reinforced Concrete
  5. Xue Jia-Chen, Wang Wei-Chien, Lee Ming-Gin, Huang Chia-Yun et al. (2025-11)
    Examining the Multi-Scale Toughening Mechanisms and Mechanical Anisotropic Behavior of 3D Printed Concrete Reinforced with Calcium Sulfate Whiskers and Mixed Fibers
  6. Akgümüş Fatih, Şahin Hatice, Mardani Ali (2025-10)
    Investigation of Waste Steel Fiber Usage Rate and Length Change on Some Fresh State Properties of 3D Printable Concrete Mixtures
  7. Wang Huai, Li Xiulin, Gong Hao, Xu Jingjie et al. (2025-10)
    Thermal and Mechanical Properties of 3D-Printed Fiber-Reinforced Lightweight Concrete Based on Air Entrainment and Hollow Glass Microspheres
  8. Si Wen, Hopkins Ben, Khan Mehran, McNally Ciaran (2025-09)
    Towards Sustainable Mortar:
    Optimising Sika-Fiber Dosage in Ground Granulated Blast Furnace Slag and Silica Fume Blends for 3D Concrete Printing
  9. Luo Surong, Jin Wenhao, Zhang Zhaorui, Zhang Kaijian (2025-09)
    Constitutive Relationship of 3D Printed Fiber Reinforced Recycled Sand Concrete Under Uniaxial Compression
  10. Li Fuhai, Xiao Sai, Yang Bo, Li Kepu et al. (2025-09)
    Mechanical Properties and Anisotropy of 3D-Printed Concrete Modified with Multiscale Materials Based on Optimized Printing Process Design
  11. Zhou Yuecheng, Xiao Sai, Li Haonian, Wang Chong et al. (2025-08)
    Study on the Rheological Properties and Printability of Multi-Scale Material Modified Mortar for 3D Printing
  12. Medeiros Fernanda, Anjos Marcos, Maia José, Dias Leonardo et al. (2025-08)
    Effect of Sisal Fibers on the Behavior of 3D-Printed Cementitious Mixtures Exposed to High Temperatures
  13. Zhang Chao, Ren Juanjuan, Zhang Shihao, Guo Yipu et al. (2025-07)
    Advanced Impact Resistance Design Through 3D-Printed Concrete Technology:
    Unleashing the Potential of Additive Manufacturing for Protective Structures
  14. Girskas Giedrius, Kligys Modestas (2025-06)
    3D Concrete Printing Review:
    Equipment, Materials, Mix Design, and Properties
  15. Dai Pengfei, Luo Zhenhua, Wang Yalun, Mbabazi Justin et al. (2025-06)
    Waste Plastic Fiber Reinforced Cementitious Cavity Structures Manufactured by Mortar Extrusion 3D Printing
  16. Hopkins Ben, Si Wen, Khan Mehran, McNally Ciaran (2025-06)
    Recent Advancements in Polypropylene Fiber-Reinforced 3D-Printed Concrete:
    Insights into Mix Ratios, Testing Procedures, and Material Behaviour
  17. Chen Meng, Sun Hao, Wang Yuting, Zhang Tong (2025-05)
    Relationship Between Interfacial Pore Structure and Anisotropic Dynamic Splitting Behaviour of 3D Printed Engineered Cementitious Composites
  18. Xia Kailun, Chen Yuning, Chen Yu, Jia Lutao et al. (2025-04)
    Programmable Toughening for 3D Printed Concrete and Architected Cementitious Materials
  19. Xia Kailun, Chen Yuning, Zhang Zedi, Wang Wei et al. (2025-03)
    In-Situ Crosslinked Nano-SiO2 Reinforced Alginate Bio-Textile for Mitigating Plastic Shrinkage in 3D Printed Concrete
  20. Yuan Hanquan, Dong Enlai, Jia Zijian, Jia Lutao et al. (2025-03)
    The Influence of Pore Structure and Fiber Orientation on Anisotropic Mechanical Property of 3D Printed Ultra-High-Performance Concrete
  21. Zeng Jun-Jie, Sun Hou-Qi, Deng Run-Bin, Yan Zitong et al. (2025-02)
    Bond Performance Between FRP-Bars and 3D-Printed High-Performance Concrete
  22. Xia Zhenjiang, Geng Jian, Zhou Zhijie, Liu Genjin (2025-01)
    Comparative Analysis of Polypropylene, Basalt, and Steel Fibers in 3D Printed Concrete:
    Effects on Flowability, Printabiliy, Rheology, and Mechanical Performance
  23. Luo Surong, Jin Wenhao, Wu Weihong, Zhang Kaijian (2024-11)
    Rheological and Mechanical Properties of Polyformaldehyde-Fiber-Reinforced 3D Printed High-Strength Concrete with the Addition of Fly-Ash
  24. Habibi Alireza, Buswell Richard, Osmani Mohamed, Aziminezhad Mohamadmahdi (2024-11)
    Sustainability Principles in 3D Concrete Printing:
    Analysing Trends, Classifying Strategies, and Future Directions
  25. Murali Gunasekaran, Leong Sing (2024-11)
    Waste-Driven Construction:
    A State of the Art Review on the Integration of Waste in 3D Printed Concrete in Recent Researches for Sustainable Development
  26. Lin Yini, Yan Jiachuan, Sun Ming, Han Xiaoyu et al. (2024-10)
    Inter-Layer Cohesion in 3D Printed Concrete:
    The Role of Width-to-Height-Ratio in Modulating Transport Properties and Pore-Structure
  27. Peng Chengming, Yang Zhenjun, Li Hui (2024-10)
    A Predictive Model for Interlayer-Water-Evolution and Experimental Validation of 3D Printed Cementitious Materials
  28. Dong Enlai, Jia Zijian, Jia Lutao, Rao Suduan et al. (2024-10)
    Modeling Fiber-Alignment in 3D Printed Ultra-High-Performance Concrete Based on Stereology-Theory
  29. Ma Wei, Wang Guosheng, Zhou Yaya, Xu Qinghu et al. (2024-09)
    Polyacrylonitrile-Fiber-Reinforced 3D Printed Concrete:
    Effects of Fiber Length and Content
  30. Liu Chao, Banthia Nemkumar, Shi Yifan, Jia Zijian et al. (2024-09)
    Early-Age Shrinkage Mitigation and Quantitative Study on Water Loss Kinetics of 3D Printed Foam-Concrete Modified with Superabsorbent Polymers
  31. Dulaj Albanela, Peeters Sef, Poorsolhjouy Payam, Salet Theo et al. (2024-09)
    Combined Analytical and Numerical Modelling of the Electrical Conductivity of 3D Printed Carbon-Nano-Tube-Cementitious-Nano-Composites
  32. Sheng Zhaoliang, Zhu Binrong, Cai Jingming, Han Jinsheng et al. (2024-09)
    Influence of Waste-Glass-Powder on Printability and Mechanical Properties of 3D Printing Geopolymer Concrete
  33. Wang Xianggang, Dong Enlai, Jia Zijian, Jia Lutao et al. (2024-09)
    Specimen-Size-Effect on Compressive Strength of 3D Printed Concrete Containing Coarse Aggregate with Varying Water-to-Binder-Ratios
  34. Hou Shaodan, Wu Wenbo, Duan Zhenhua, Zhou Shuai et al. (2024-09)
    Rheology of Fiber-Reinforced Mortar for 3D Printing Construction:
    Effect of Recycled Hybrid-Powder and Polyethylene-Fiber
  35. Ler Kee-Hong, Ma Chau-Khun, Chin Chee-Long, Ibrahim Izni et al. (2024-08)
    Porosity and Durability Tests on 3D Printing Concrete:
    A Review
  36. Yang Rijiao, Xu Chengji, Lan Yan, Qiu Yue et al. (2024-08)
    Near Pixel-Level Characterisation of Micro-Fibers in 3D Printed Cementitious Composites and Migration Mechanisms Using a Novel Iterative Method
  37. Şahin Hatice, Akgümüş Fatih, Mardani Ali (2024-08)
    Mechanical and Rheological Properties of Fiber‐Reinforced 3D Printable Concrete in Terms of Fiber Content and Aspect Ratio
  38. Teng Fei, Ye Junhong, Yu Jie, Li Heng et al. (2024-07)
    Development of Strain-Hardening Cementitious Composites (SHCC) As Bonding Materials to Enhance Inter-Layer and Flexural Performance of 3D Printed Concrete
  39. Yan Kang-Tai, Wang Xian-Peng, Ding Yao, Li Lingzhi et al. (2024-06)
    3D Printed LC3-Based Lightweight Engineered Cementitious Composites:
    Fresh State, Hardened Material-Properties and Beam-Performance
  40. Luo Surong, Li Wenqiang, Wang Dehui (2024-05)
    Study on Bending Performance of 3D Printed PVA-Fiber-Reinforced Cement-Based Material
  41. Yan Kang-Tai, Li Lingzhi, Ye Junhong, Bazarov Dilshod et al. (2024-05)
    Anisotropic Size-Effect of 3D Printed LC3-Based Engineered Cementitious Composites
  42. Sun Bochao, Dominicus Randy, Dong Enlai, Li Peichen et al. (2024-04)
    Predicting the Strength Development of 3D Printed Concrete Considering the Synergistic Effect of Curing-Temperature and Humidity:
    From Perspective of Modified Maturity-Model
  43. Jia Zijian, Kong Lingyu, Jia Lutao, Ma Lei et al. (2024-04)
    Printability and Mechanical Properties of 3D Printing Ultra-High-Performance Concrete Incorporating Limestone-Powder
  44. Ma Lei, Jia Zijian, Chen Yuning, Jiang Yifan et al. (2024-03)
    Water Loss and Shrinkage Prediction in 3D Printed Concrete with Varying w/b and Specimen Sizes
  45. Lu Yue, Xiao Jianzhuang, Li Yan (2024-03)
    3D Printing Recycled Concrete Incorporating Plant-Fibers:
    A Comprehensive Review
  46. Sheng Zhaoliang, Zhu Binrong, Cai Jingming, Li Xuesen et al. (2024-03)
    Development of a Novel Extrusion-Device to Improve the Printability of 3D Printable Geopolymer Concrete
  47. Liu Xinhao, Hu Jiajun, Guo Xiaolu (2024-03)
    Printability and Inter-Layer Bonding Property of 3D Printed Fiber-Reinforced Geopolymer
  48. Şahin Hatice, Mardani Ali, Beytekin Hatice (2024-02)
    Effect of Silica-Fume Utilization on Structural Build-Up, Mechanical and Dimensional Stability Performance of Fiber-Reinforced 3D Printable Concrete
  49. Jia Lutao, Jia Zijian, Zhang Zedi, Tang Zhenzhong et al. (2024-02)
    Effect of Recycled Brick-Powder with Various Particle-Features on Early-Age Hydration, Water-State, and Rheological Properties of Blended Cement-Paste in the Context of 3D Printing
  50. Zhou Wen, Zhu He, Hu Wei-Hsiu, Wollaston Ryan et al. (2024-02)
    Low-Carbon, Expansive Engineered Cementitious Composites (ECC) In the Context of 3D Printing
  51. Tang Weichen, Sun Junbo, Wang Yufei, Chen Zhaohui et al. (2024-02)
    Electromagnetic Absorption Properties of 3D Printed Fiber-Oriented Composites Under Different Paths
  52. Dai Pengfei, Lyu Qifeng, Zong Meirong, Zhu Pinghua (2024-01)
    Effect of Waste-Plastic-Fibers on the Printability and Mechanical Properties of 3D Printed Cement Mortar
  53. Li Yeou-Fong, Tsai Pei-Jen, Syu Jin-Yuan, Lok Man-Hoi et al. (2023-12)
    Mechanical Properties of 3D Printed Carbon Fiber-Reinforced Cement Mortar
  54. Jia Zijian, Zhang Zedi, Jia Lutao, Cao Ruilin et al. (2023-09)
    Effect of Different Expansive Agents on the Early-Age Structural Build-Up Process of Cement-Paste
  55. Zhu Lingli, Zhang Meng, Zhang Yaqi, Yao Jie et al. (2023-07)
    Research Progress on Shrinkage Properties of Extruded 3D Printed Cement-Based Materials
  56. Nguyen Ho, Thach Nguyen, Le Quang, Anh Yonghan (2023-07)
    A Review of Current Progress and Application of Machine Learning on 3D Printed Concrete
  57. Rajeev Pathmanathan, Ramesh Akilesh, Navaratnam Satheeskumar, Sanjayan Jay (2023-04)
    Using Fiber Recovered from Face Mask Waste to Improve Printability in 3D Concrete Printing
  58. Cui Dong, Wu Yingxuan, Xie Xiaoying, Tian Guanfei et al. (2023-03)
    Investigation on the Micro-Structure of a 3D Printed Mortar Through a Novel Leaching-Subsidiary Tomography

BibTeX
@article{ma_zhan_lomb_jia.2022.PSIRHaFOo3PCwPFaTRwS,
  author            = "Lei Ma and Qing Zhang and Hélène Lombois-Burger and Zijian Jia and Zedi Zhang and Geng Niu and Yamei Zhang",
  title             = "Pore-Structure, Internal Relative Humidity, and Fiber-Orientation of 3D Printed Concrete with Polypropylene-Fiber and Their Relation with Shrinkage",
  doi               = "10.1016/j.jobe.2022.105250",
  year              = "2022",
  journal           = "Journal of Building Engineering",
  volume            = "61",
}
Formatted Citation

L. Ma, “Pore-Structure, Internal Relative Humidity, and Fiber-Orientation of 3D Printed Concrete with Polypropylene-Fiber and Their Relation with Shrinkage”, Journal of Building Engineering, vol. 61, 2022, doi: 10.1016/j.jobe.2022.105250.

Ma, Lei, Qing Zhang, Hélène Lombois-Burger, Zijian Jia, Zedi Zhang, Geng Niu, and Yamei Zhang. “Pore-Structure, Internal Relative Humidity, and Fiber-Orientation of 3D Printed Concrete with Polypropylene-Fiber and Their Relation with Shrinkage”. Journal of Building Engineering 61 (2022). https://doi.org/10.1016/j.jobe.2022.105250.