Skip to content

3D Construction Printing Standing for Sustainability and Circularity (2023-03)

Material-Level Opportunities

10.3390/ma16062458

 Fonseca Mariana,  Matos Ana
Journal Article - Materials, Vol. 16, Iss. 6

Abstract

Three-dimensional Cementitious materials Printing (3DCP) is a cutting-edge technology for the construction industry. Three-dimensional printed buildings have shown that a well-developed automated technology can foster valuable benefits, such as a freeform architectural design without formworks and reduced human intervention. However, scalability, commercialization and sustainability of the 3DPC technology remain critical issues. The current work presents the ecological fragility, challenges and opportunities inherent in decreasing the 3DCP environmental footprint at a material level (cementitious materials and aggregates). The very demanding performance of printable mixtures, namely in a fresh state, requires high dosages of cement and supplementary cementitious materials (SCM). Besides the heavy carbon footprint of cement production, the standard SCM availability might be an issue, especially in the longer term. One exciting option to decrease the embodied CO2 of 3DCP is, for example, to incorporate alternative and locally available SCM as partial cement replacements. Those alternative SCM can be wastes or by-products from industries or agriculture, with no added value. Moreover, the partial replacement of natural aggregate can also bring advantages for natural resource preservation. This work has highlighted the enormous potential of 3DCP to contribute to reducing the dependence on Portland cement and to manage the current colossal wastes and by-products with no added value, shifting to a Circular Economy. Though LCA analysis, mixture design revealed a critical parameter in the environmental impact of 3DCP elements or buildings. Even though cement significantly affects the LCA of 3DCP, it is crucial to achieving adequate fresh properties and rheology. From the literature survey, mixtures formulated with alternative SCM (wastes or by-products) are still restricted to rice husk ash, Municipal Solid Waste ashes and recycled powder from construction and demolition wastes. Natural aggregate replacement research has been focused on recycled fine sand, mine tailing, copper tailing, iron tailing, ornamental stone waste, recycled glass, crumb rubber, rubber powder and granules, recycled PET bottles and steel slag. However, flowability loss and mechanical strength decrease are still critical. Research efforts are needed to find low-carbon cement replacements and mix-design optimization, leading to a more sustainable and circular 3DCP while ensuring the final product performance.

99 References

  1. Agustí-Juan Isolda, Habert Guillaume (2016-11)
    Environmental Design Guidelines for Digital Fabrication
  2. Alhumayani Hashem, Gomaa Mohamed, Soebarto Veronica, Jabi Wassim (2020-06)
    Environmental Assessment of Large-Scale 3D Printing in Construction:
    A Comparative Study between Cob and Concrete
  3. Álvarez-Fernández Martina, Prendes-Gero María, González-Nicieza Celestino, Guerrero-Miguel Diego-José et al. (2021-02)
    Optimum Mix-Design for 3D Concrete Printing Using Mining-Tailings:
    A Case Study in Spain
  4. Barbosa Marcella, Anjos Marcos, Cabral Kleber, Souza Dias Leonardo (2022-05)
    Development of Composites for 3D Printing with Reduced Cement Consumption
  5. Bhattacherjee Shantanu, Basavaraj Anusha, Rahul Attupurathu, Santhanam Manu et al. (2021-06)
    Sustainable Materials for 3D Concrete Printing
  6. Bhattacherjee Shantanu, Santhanam Manu (2020-07)
    Enhancing Buildability of 3D Printable Concrete by Spraying of Accelerating-Admixture on Surface
  7. Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
    Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture
  8. Chen Yu, Figueiredo Stefan, Yalçınkaya Çağlar, Çopuroğlu Oğuzhan et al. (2019-04)
    The Effect of Viscosity-Modifying Admixture on the Extrudability of Limestone and Calcined-Clay-Based Cementitious Material for Extrusion-Based 3D Concrete Printing
  9. Chen Yu, He Shan, Gan Yidong, Çopuroğlu Oğuzhan et al. (2021-11)
    A Review of Printing-Strategies, Sustainable Cementitious Materials and Characterization Methods in the Context of Extrusion-Based 3D Concrete Printing
  10. Chen Yu, He Shan, Zhang Yu, Wan Zhi et al. (2021-08)
    3D Printing of Calcined-Clay-Limestone-Based Cementitious Materials
  11. Chen Yu, Jansen Koen, Zhang Hongzhi, Rodríguez Claudia et al. (2020-07)
    Effect of Printing-Parameters on Inter-Layer Bond Strength of 3D Printed Limestone-Calcined-Clay-Based Cementitious Materials:
    An Experimental and Numerical Study
  12. Chen Yu, Li Zhenming, Figueiredo Stefan, Çopuroğlu Oğuzhan et al. (2019-04)
    Limestone and Calcined-Clay-Based Sustainable Cementitious Materials for 3D Concrete Printing:
    A Fundamental Study of Extrudability and Early-Age Strength Development
  13. Chen Mingxu, Li Laibo, Zheng Yan, Zhao Piqi et al. (2018-09)
    Rheological and Mechanical Properties of Admixtures-Modified 3D Printing Sulphoaluminate Cementitious Materials
  14. Chen Yu, Rodríguez Claudia, Li Zhenming, Chen Boyu et al. (2020-07)
    Effect of Different Grade Levels of Calcined Clays on Fresh and Hardened Properties of Ternary-Blended Cementitious Materials for 3D Printing
  15. Christen Heidi, Zijl Gideon, Villiers Wibke (2022-05)
    The Incorporation of Recycled Brick-Aggregate in 3D Printed Concrete
  16. Cuevas Villalobos Karla, Chougan Mehdi, Martin Falk, Ghaffar Seyed et al. (2021-05)
    3D Printable Lightweight Cementitious Composites with Incorporated Waste-Glass-Aggregates and Expanded Microspheres:
    Rheological, Thermal and Mechanical Properties
  17. Dai Shuo, Zhu Huajun, Zhai Munan, Wu Qisheng et al. (2021-06)
    Stability of Steel-Slag as Fine Aggregate and Its Application in 3D Printing Materials
  18. Delgado Camacho Daniel, Clayton Patricia, Brien William, Seepersad Carolyn et al. (2018-02)
    Applications of Additive Manufacturing in the Construction Industry:
    A Forward-Looking Review
  19. Dey Dhrutiman, Srinivas Dodda, Boddepalli Uday, Panda Biranchi et al. (2022-09)
    3D Printability of Ternary-Portland-Cement Mixes Containing Fly-Ash and Limestone
  20. Dey Dhrutiman, Srinivas Dodda, Panda Biranchi, Suraneni Prannoy et al. (2022-02)
    Use of Industrial Waste-Materials for 3D Printing of Sustainable Concrete:
    A Review
  21. Ding Tao, Xiao Jianzhuang, Qin Fei, Duan Zhenhua (2020-03)
    Mechanical Behavior of 3D Printed Mortar with Recycled Sand at Early-Ages
  22. Ding Tao, Xiao Jianzhuang, Zou Shuai, Wang Yu (2020-06)
    Hardened Properties of Layered 3D Printed Concrete with Recycled Sand
  23. Ding Tao, Xiao Jianzhuang, Zou Shuai, Yu Jiangtao (2021-03)
    Flexural Properties of 3D Printed Fiber-Reinforced Concrete with Recycled Sand
  24. Duan Zhenhua, Li Lei, Yao Qinye, Zou Shuai et al. (2022-08)
    Effect of Metakaolin on the Fresh and Hardened Properties of 3D Printed Cementitious Composite
  25. Dvorkin Leonid, Marchuk Vitaliy, Hager Izabela, Maroszek Marcin (2022-06)
    Design of Cement-Slag Concrete Composition for 3D Printing
  26. Han Yilong, Yang Zhihan, Ding Tao, Xiao Jianzhuang (2020-08)
    Environmental and Economic Assessment on 3D Printed Buildings with Recycled Concrete
  27. Hao Lucen, Xiao Jianzhuang, Sun Jingting, Xia Bing et al. (2022-06)
    Thermal Conductivity of 3D Printed Concrete With Recycled Fine Aggregate Composite Phase-Change-Materials
  28. Hojati Maryam, Li Zhanzhao, Memari Ali, Park Keunhyoung et al. (2022-01)
    3D Printable Quaternary-Cementitious-Materials Towards Sustainable Development:
    Mixture Design and Mechanical Properties
  29. Hossain Md., Zhumabekova Altynay, Paul Suvash, Kim Jong (2020-10)
    A Review of 3D Printing in Construction and Its Impact on the Labor Market
  30. Hou Shaodan, Xiao Jianzhuang, Duan Zhenhua, Ma Guowei (2021-10)
    Fresh Properties of 3D Printed Mortar with Recycled Powder
  31. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  32. Klyuev Sergey, Klyuev Alexander, Fediuk Roman, Ageeva Marina et al. (2022-04)
    Fresh and Mechanical Properties of Low-Cement Mortars for 3D Printing
  33. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  34. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  35. Liu Junli, Li Shuai, Gunasekara Chamila, Fox Kate et al. (2021-11)
    3D Printed Concrete with Recycled Glass:
    Effect of Glass Gradation on Flexural Strength and Microstructure
  36. Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-09)
    3D Printing Concrete with Recycled Coarse Aggregates:
    The Influence of Pore-Structure on Inter-Layer Adhesion
  37. Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-06)
    Hardened Properties of 3D Printed Concrete with Recycled Coarse Aggregate
  38. Liu Junli, Setunge Sujeeva, Tran Jonathan (2022-07)
    3D Concrete Printing with Cement-Coated Recycled Crumb Rubber:
    Compressive and Microstructural Properties
  39. Lloret-Fritschi Ena, Shahab Amir, Linus Mettler, Flatt Robert et al. (2014-03)
    Complex Concrete Structures:
    Merging Existing Casting Techniques with Digital Fabrication
  40. Long Wujian, Lin Can, Tao Jie-Lin, Ye Taohua et al. (2021-02)
    Printability and Particle-Packing of 3D Printable Limestone-Calcined-Clay-Cement Composites
  41. Lu Bing, Weng Yiwei, Li Mingyang, Qian Ye et al. (2019-02)
    A Systematical Review of 3D Printable Cementitious Materials
  42. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  43. Marchon Delphine, Kawashima Shiho, Bessaies-Bey Hela, Mantellato Sara et al. (2018-05)
    Hydration- and Rheology-Control of Concrete for Digital Fabrication:
    Potential Admixtures and Cement-Chemistry
  44. Matos Ana, Emiroğlu Mehmet, Subaşı Serkan, Maraşlı Muhammed et al. (2023-01)
    Architectonic Cement-Based Composites 3D Printing
  45. Mechtcherine Viktor, Nerella Venkatesh, Will Frank, Näther Mathias et al. (2019-08)
    Large-Scale Digital Concrete Construction:
    CONPrint3D Concept for On-Site, Monolithic 3D Printing
  46. Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2020-08)
    Plastic Shrinkage Cracking in 3D Printed Concrete
  47. Mohammad Malek, Masad Eyad, Ghamdi Sami (2020-12)
    3D Concrete Printing Sustainability:
    A Comparative Life Cycle Assessment of Four Construction Method Scenarios
  48. Mohan Manu, Rahul Attupurathu, Tittelboom Kim, Schutter Geert (2020-07)
    Evaluating the Influence of Aggregate Content on Pumpability of 3D Printable Concrete
  49. Muthukrishnan Shravan, Kua Harn, Yu Ling, Chung Jacky (2020-05)
    Fresh Properties of Cementitious Materials Containing Rice-Husk-Ash for Construction 3D Printing
  50. Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
    Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing
  51. Nerella Venkatesh, Näther Mathias, Iqbal Arsalan, Butler Marko et al. (2018-09)
    In-Line Quantification of Extrudability of Cementitious Materials for Digital Construction
  52. Olsson Nils, Arica Emrah, Woods Ruth, Madrid Javier (2021-10)
    Industry 4.0 in a Project Context:
    Introducing 3D Printing in Construction Projects
  53. Panda Biranchi, Lim Jian, Tan Ming (2019-02)
    Mechanical Properties and Deformation Behavior of Early-Age Concrete in the Context of Digital Construction
  54. Panda Biranchi, Mohamed Nisar, Paul Suvash, Bhagath Singh Gangapatnam et al. (2019-07)
    The Effect of Material Fresh Properties and Process Parameters on Buildability and Inter-Layer Adhesion of 3D Printed Concrete
  55. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2018-11)
    Improving the 3D Printability of High-Volume Fly-Ash Mixtures via the Use of Nano-Attapulgite-Clay
  56. Panda Biranchi, Tan Ming (2018-03)
    Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing
  57. Panda Biranchi, Tan Ming (2018-11)
    Rheological Behavior of High-Volume Fly-Ash Mixtures Containing Micro-Silica for Digital Construction Application
  58. Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
    Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing
  59. Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
    Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction
  60. Pessoa Ana Sofia, Guimarães Ana, Lucas Sandra, Simões Nuno (2021-02)
    3D Printing in the Construction Industry:
    A Systematic Review of the Thermal Performance in Buildings
  61. Qian Hao, Hua Sudong, Yue Hongfei, Feng Guiyang et al. (2022-09)
    Utilization of Recycled Construction-Powder in 3D Concrete Printable Materials through Particle-Packing-Optimization
  62. Rahul Attupurathu, Mohan Manu, Schutter Geert, Tittelboom Kim (2021-10)
    3D Printable Concrete with Natural and Recycled Coarse Aggregates:
    Rheological, Mechanical and Shrinkage Behavior
  63. Rahul Attupurathu, Santhanam Manu (2020-02)
    Evaluating the Printability of Concretes Containing Lightweight Coarse Aggregates
  64. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
    3D Printable Concrete:
    Mixture-Design and Test-Methods
  65. Rahul Attupurathu, Sharma Abhishek, Santhanam Manu (2020-01)
    A Desorptivity-Based Approach for the Assessment of Phase Separation During Extrusion of Cementitious Materials
  66. Rehman Atta, Kim Jung-Hoon (2021-07)
    3D Concrete Printing:
    A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics
  67. Rehman Atta, Lee Sang-Min, Kim Jung-Hoon (2020-06)
    Use of Municipal Solid-Waste Incineration-Ash in 3D Printable Concrete
  68. Şahin Hatice, Mardani Ali (2021-12)
    Assessment of Materials, Design Parameters and Some Properties of 3D Printing Concrete Mixtures:
    A State of the Art Review
  69. Salet Theo, Ahmed Zeeshan, Bos Freek, Laagland Hans (2018-05)
    Design of a 3D Printed Concrete Bridge by Testing
  70. Sambucci Matteo, Marini Danilo, Sibai Abbas, Valente Marco (2020-08)
    Preliminary Mechanical Analysis of Rubber-Cement Composites Suitable for Additive Process Construction
  71. Sanjayan Jay, Nematollahi Behzad (2019-02)
    3D Concrete Printing for Construction Applications
  72. Saruhan Vedat, Keskinateş Muhammer, Felekoğlu Burak (2022-04)
    A Comprehensive Review on Fresh State Rheological Properties of Extrusion-Mortars Designed for 3D Printing Applications
  73. Shakor Pshtiwan, Sanjayan Jay, Nazari Ali, Nejadi Shami (2017-02)
    Modified 3D Printed Powder to Cement-Based Material and Mechanical Properties of Cement Scaffold Used in 3D Printing
  74. Skibicki Szymon, Pułtorak Monika, Kaszyńska Maria, Hoffmann Marcin et al. (2022-04)
    The Effect of Using Recycled PET-Aggregates on Mechanical and Durability Properties of 3D Printed Mortar
  75. Sun Bochao, Zeng Qiang, Wang Dianchao, Zhao Weijian (2022-10)
    Sustainable 3D Printed Mortar with CO2 Pretreated Recycled Fine Aggregates
  76. Tay Yi, Li Mingyang, Tan Ming (2019-04)
    Effect of Printing Parameters in 3D Concrete Printing:
    Printing Region and Support Structures
  77. Tay Yi, Ting Guan, Qian Ye, Panda Biranchi et al. (2018-07)
    Time-Gap-Effect on Bond Strength of 3D Printed Concrete
  78. Ting Guan, Quah Tan, Lim Jian, Tay Yi et al. (2022-01)
    Extrudable Region Parametrical Study of 3D Printable Concrete Using Recycled-Glass Concrete
  79. Ting Guan, Tay Yi, Qian Ye, Tan Ming (2019-03)
    Utilization of Recycled Glass for 3D Concrete Printing:
    Rheological and Mechanical Properties
  80. Ting Guan, Tay Yi, Tan Ming (2021-04)
    Experimental Measurement on the Effects of Recycled Glass-Cullets as Aggregates for Construction 3D Printing
  81. Tinoco Matheus, Mendonça Érica, Fernandez Letízia, Caldas Lucas et al. (2022-04)
    Life Cycle Assessment and Environmental Sustainability of Cementitious Materials for 3D Concrete Printing:
    A Systematic Literature Review
  82. Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
    Digital Concrete:
    A Review
  83. Weng Yiwei, Li Mingyang, Ruan Shaoqin, Wong Teck et al. (2020-03)
    Comparative Economic, Environmental and Productivity-Assessment of a Concrete Bathroom Unit Fabricated Through 3D Printing and a Pre-Cast Approach
  84. Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
    Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model
  85. Wu Yiwen, Liu Chao, Liu Huawei, Zhang Zhenzi et al. (2021-07)
    Study on the Rheology and Buildability of 3D Printed Concrete with Recycled Coarse Aggregates
  86. Wu Peng, Wang Jun, Wang Xiangyu (2016-04)
    A Critical Review of the Use of 3D Printing in the Construction Industry
  87. Xiao Jianzhuang, Han Nv, Zhang Lihai, Zou Shuai (2021-05)
    Mechanical and Microstructural Evolution of 3D Printed Concrete with Polyethylene-Fiber and Recycled Sand at Elevated Temperatures
  88. Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
    Large-Scale 3D Printing Concrete Technology:
    Current Status and Future Opportunities
  89. Xiao Jianzhuang, Lv Zhenyuan, Duan Zhenhua, Hou Shaodan (2022-03)
    Study on Preparation and Mechanical Properties of 3D Printed Concrete with Different Aggregate-Combinations
  90. Xiao Jianzhuang, Zou Shuai, Yu Ying, Wang Yu et al. (2020-09)
    3D Recycled Mortar Printing:
    System-Development, Process-Design, Material-Properties and On-Site-Printing
  91. Yang Huashan, Che Yujun (2022-01)
    Recycling of Aggregate Micro-Fines as a Partial Replacement for Fly-Ash in 3D Printing Cementitious Materials
  92. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-01)
    Fresh and Anisotropic-Mechanical Properties of 3D Printable Ultra-High-Ductile Concrete with Crumb-Rubber
  93. Yuan Qiang, Zhou Dajun, Li Baiyun, Huang Hai et al. (2017-11)
    Effect of Mineral Admixtures on the Structural Build-Up of Cement-Paste
  94. Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
    Mix-Design Concepts for 3D Printable Concrete:
    A Review
  95. Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
    A Review of the Current Progress and Application of 3D Printed Concrete
  96. Zhang Hanghua, Xiao Jianzhuang (2021-08)
    Plastic Shrinkage and Cracking of 3D Printed Mortar with Recycled Sand
  97. Zhang Hanghua, Xiao Jianzhuang, Duan Zhenhua, Zou Shuai et al. (2022-06)
    Effects of Printing Paths and Recycled Fines on Drying Shrinkage of 3D Printed Mortar
  98. Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
    Fresh Properties of a Novel 3D Printing Concrete Ink
  99. Zou Shuai, Xiao Jianzhuang, Duan Zhenhua, Ding Tao et al. (2021-10)
    On Rheology of Mortar with Recycled Fine Aggregate for 3D Printing

25 Citations

  1. Matos Ana, Fonseca Mariana, Milheiro-Oliveira Paula, Pimentel Mário (2026-01)
    Design of Eco-Efficient »Concrete« for Digital Fabrication
  2. Zhang Chao, Zhang Junyi, Su Yilin, Zhang Yuying et al. (2026-01)
    Low-Carbon 3D-Printed Concrete by Using Biochar as a Carbon Sequestrator
  3. Tushar Fazlul, Hasan Mehedi, Hasan Kamrul, Mawa Jannatul et al. (2026-01)
    Factors Affecting Flowability and Rheological Behavior of 3D Printed Concrete:
    A Comprehensive Review
  4. Gil-Lopez Tomas, Amirfiroozkoohi Alireza, Valiente López María, Verdu-Vazquez Maria (2026-01)
    The Impact of 3D Printing on Mortar Strength and Flexibility:
    A Comparative Analysis of Conventional and Additive Manufacturing Techniques
  5. Cojocari Iulia, Martins Mirna, Rangel Bárbara, Cunha Jaime (2026-01)
    Scaling 3D Printing for Large-Scale Production by Optimising Workflow
  6. Ribeiro Elis, Rangel Bárbara, Brandão Filipe, Figueiredo Bruno et al. (2026-01)
    Improving Natural Ventilation Through 3D Concrete Printing
  7. Okangba Stanley, Ngcobo Ntebo, Mahachi Jeffrey (2025-12)
    Bridging Innovation and Governance:
    A UTAUT-Based Mixed-Method Study of 3D Concrete Printing Technology Acceptance in South Africa
  8. Subramaniam Kolluru, Maganty Sohanth, Kamakshi Tippabhotla, Ghandhi Dhruv et al. (2025-12)
    Design and Deployment of a Functionally Efficient 3D-Printed Concrete Bridge Developed by Form Optimization
  9. Maroszek Marcin, Rudziewicz Magdalena, Shah Syed, Tran Doan et al. (2025-11)
    Development of Eco-Friendly Construction Materials for 3D Printing Using Fly Ash and Demolition Waste
  10. Matos Ana, Milheiro-Oliveira Paula, Pinto Nuno, Pimentel Mário (2025-10)
    Cementitious Mortars for Sustainable 3D Printing
  11. Jesus Manuel, Dias Ricardo, Teixeira João, Delgado João et al. (2025-09)
    Optimisation of 3D Printable Cement- and Lime-Based Mortars for Built Heritage Rehabilitation
  12. Maroszek Marcin, Rudziewicz Magdalena, Rusin-Żurek Karina, Hager Izabela et al. (2025-09)
    Recycled Materials and Lightweight Insulating Additions to Mixtures for 3D Concrete Printing
  13. Wang Yufei, Sun Junbo, Wang Xiangyu, Huang Bo et al. (2025-09)
    Environmental and Economic Evaluation of a Prefabricated 3D-Printed Structural Units Using Recycled Aggregates from Construction and Demolition Waste:
    A Case Study in China
  14. Iqbal Imtiaz, Besklubova Svetlana, Kasim Tala (2025-07)
    Assessment Framework for 3D Concrete Printing Technology in Alignment with Construction 5.0 Criteria
  15. Panchal Priyanka, Choi Myoungsung (2025-07)
    A Review on Effect of Natural Fibers to Mitigate CO2 Footprint and Enhance Engineering Properties of 3D Printing Concrete
  16. Bradshaw James, Si Wen, Khan Mehran, McNally Ciaran (2025-07)
    Emerging Insights into the Durability of 3D-Printed Concrete:
    Recent Advances in Mix Design Parameters and Testing
  17. Mim Nusrat, Shaikh Faiz, Sarker Prabir (2025-03)
    Sustainable 3D Printed Concrete Incorporating Alternative Fine Aggregates:
    A Review
  18. Palazzo Andrea (2025-02)
    How 3D Printers for Houses Can Reduce CO2 Emissions
  19. Albrecht Sophie, Hellerbrand Stefan, Weininger Florian, Thiel Charlotte (2025-02)
    Strategies for Minimizing Environmental Impact in Construction:
    A Case Study of a Cementitious 3D Printed Lost Formwork for a Staircase
  20. Hutyra Adam, Bańkosz Magdalena, Tyliszczak Bożena (2024-08)
    Technology for Automated Production of High-Performance Building Compounds for 3D Printing
  21. Rubeis Tullio, Ciccozzi Annamaria, Giusti Letizia, Ambrosini Dario (2024-07)
    On the Use of 3D Printing to Enhance the Thermal Performance of Building Envelope:
    A Review
  22. Villiers Wibke, Mwongo Mwiti, Babafemi Adewumi, Zijl Gideon (2024-06)
    Quantifying Recycled Construction and Demolition Waste for Use in 3D Printed Concrete
  23. Ghaffar Seyed, Noaimat Yazeed, Chougan Mehdi, Kheetan Mazen (2024-06)
    Emerging Resources for the Development of Low-Carbon Cementitious Composites for 3D Printing Applications
  24. Yang Min, Li Chao, Liu Hao, Huo Longfei et al. (2024-02)
    Exploring the Potential for Carrying Capacity and Reusability of 3D Printed Concrete Bridges:
    Construction, Dismantlement, and Reconstruction of a Box Arch Bridge
  25. Ungureanu Dragoș, Onuțu Cătălin, Isopescu Dorina, Țăranu Nicolae et al. (2023-06)
    A Novel Approach for 3D Printing Fiber-Reinforced Mortars

BibTeX
@article{fons_mato.2023.3CPSfSaC,
  author            = "Mariana Fonseca and Ana Mafalda Matos",
  title             = "3D Construction Printing Standing for Sustainability and Circularity: Material-Level Opportunities",
  doi               = "10.3390/ma16062458",
  year              = "2023",
  journal           = "Materials",
  volume            = "16",
  number            = "6",
}
Formatted Citation

M. Fonseca and A. M. Matos, “3D Construction Printing Standing for Sustainability and Circularity: Material-Level Opportunities”, Materials, vol. 16, no. 6, 2023, doi: 10.3390/ma16062458.

Fonseca, Mariana, and Ana Mafalda Matos. “3D Construction Printing Standing for Sustainability and Circularity: Material-Level Opportunities”. Materials 16, no. 6 (2023). https://doi.org/10.3390/ma16062458.