Penetration-Test as a Fast Method to Determine Yield-Stress and Structural Build-Up for 3D Printing of Cementitious Materials (2021-04)¶
10.1016/j.cemconcomp.2021.104066
,
Journal Article - Cement and Concrete Composites, Vol. 121
Abstract
3D printing technology is becoming increasingly important in the construction sector, leading to changes in material requirements compared to traditional manufacturing methods. To characterize the rheological properties (yield stress, viscosity, and structural build-up) of printable mortars, suitable methods are necessary. However, with a rheometer, this is problematic because a time-resolved determination of the properties is complicated, time-consuming, and the torque limitation is often too low. For this reason, a penetration test, and a formula for calculating the yield stress are introduced. To validate the formula, it is determined that the results are comparable with the calculated yield stress based on a rheological test. Furthermore, it is shown that it is possible to extrapolate the data and to determine structural build-up. This paper is intended to give an up-to-date overview of the penetration method and to illustrate the advantages and possibilities of the method in the field of 3D printing. Moreover, it is discussed in which areas improvement and further investigations are needed.
¶
23 References
- Bhattacherjee Shantanu, Santhanam Manu (2020-07)
Enhancing Buildability of 3D Printable Concrete by Spraying of Accelerating-Admixture on Surface - Bong Shin, Nematollahi Behzad, Arunothayan Arun, Xia Ming et al. (2020-07)
Effect of Wollastonite Micro-Fiber Addition on Properties of 3D Printable ‘Just-Add-Water’ Geopolymers - Burger Joris, Lloret-Fritschi Ena, Taha Nizar, Scotto Fabio et al. (2020-07)
Design and Fabrication of a Non-Standard, Structural Concrete Column Using Eggshell:
Ultra-Thin, 3D Printed Formwork - Dedenis Marie, Sonebi Mohammed, Amziane Sofiane, Perrot Arnaud et al. (2020-07)
Effect of Metakaolin, Fly-Ash and Polypropylene-Fibers on Fresh and Rheological Properties of 3D Printing Based Cement Materials - Khalil Noura, Aouad Georges, Cheikh Khadija, Rémond Sébastien (2017-09)
Use of Calcium-Sulfoaluminate-Cements for Setting-Control of 3D Printing Mortars - Lloret-Fritschi Ena, Wangler Timothy, Gebhard Lukas, Mata-Falcón Jaime et al. (2020-05)
From Smart Dynamic Casting to a Growing Family of Digital Casting Systems - Mai (née Dressler) Inka, Freund Niklas, Lowke Dirk (2020-07)
Control of Strand Properties Produced with Shotcrete 3D Printing by Accelerator Dosage and Process Parameters - Marchon Delphine, Kawashima Shiho, Bessaies-Bey Hela, Mantellato Sara et al. (2018-05)
Hydration- and Rheology-Control of Concrete for Digital Fabrication:
Potential Admixtures and Cement-Chemistry - Mazhoud Brahim, Perrot Arnaud, Picandet Vincent, Rangeard Damien et al. (2019-04)
Underwater 3D Printing of Cement-Based Mortar - Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
Extrusion-Based Additive Manufacturing with Cement-Based Materials:
Production Steps, Processes, and Their Underlying Physics - Nematollahi Behzad, Bong Shin, Xia Ming, Sanjayan Jay (2020-07)
Digital Fabrication of ‘Just-Add-Water’ Geopolymers:
Effects of Curing Condition and Print-Time Interval - Panda Biranchi, Lim Jian, Tan Ming (2019-02)
Mechanical Properties and Deformation Behavior of Early-Age Concrete in the Context of Digital Construction - Panda Biranchi, Unluer Cise, Tan Ming (2019-08)
Extrusion and Rheology Characterization of Geopolymer Nanocomposites Used in 3D Printing - Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques - Pott Ursula, Jakob Cordula, Jansen Daniel, Neubauer Jürgen et al. (2020-02)
Investigation of the Incompatibilities of Cement and Superplasticizers and Their Influence on the Rheological Behavior - Reiter Lex, Wangler Timothy, Anton Ana-Maria, Flatt Robert (2020-05)
Setting-on-Demand for Digital Concrete:
Principles, Measurements, Chemistry, Validation - Reiter Lex, Wangler Timothy, Roussel Nicolas, Flatt Robert (2018-06)
The Role of Early-Age Structural Build-Up in Digital Fabrication with Concrete - Roussel Nicolas (2018-05)
Rheological Requirements for Printable Concretes - Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
Vision of 3D Printing with Concrete:
Technical, Economic and Environmental Potentials - Szabó Anna, Reiter Lex, Lloret-Fritschi Ena, Wangler Timothy et al. (2020-07)
ACDC:
The Admixture-Controlled Digital Casting and Its Application to Thin-Folded Concrete Structures - Wangler Timothy, Lloret-Fritschi Ena, Reiter Lex, Hack Norman et al. (2016-10)
Digital Concrete:
Opportunities and Challenges - Wolfs Robert, Bos Freek, Salet Theo (2018-06)
Correlation Between Destructive Compression Tests and Non-Destructive Ultrasonic Measurements on Early-Age 3D Printed Concrete - Yuan Qiang, Zhou Dajun, Li Baiyun, Huang Hai et al. (2017-11)
Effect of Mineral Admixtures on the Structural Build-Up of Cement-Paste
40 Citations
- Fasihi Ali, Libre Nicolas (2025-11)
Tip Penetration Test for Rapid in-Line Assessment of Static Yield Stress During 3D Concrete Printing Process - Zhang Jiao-Long, Yuan Yong, Fatoyinbo Imoleayo, Zhou Lujie et al. (2025-11)
3D-Printable Mortars Incorporating Municipal Solid Waste Incineration Bottom Ash:
Linking Hydration to Extrudability and Mechanical Performance - Barry Mamadou, Jacquet Yohan, Perrot Arnaud (2025-10)
Pocket Vane and Penetrometer as Quality Control Tool for Extrusion 3D Concrete Printing - Liu Qiang, Zhang Xinwei, Jiang Quan, Xia Yong et al. (2025-07)
Effects of Nano-Al2O3, Nano-MgO and Nano-Fe2O3 on the Properties of Cement-Based 3D Printing:
A Comparative Study - Sando Mona, Stephan Dietmar (2025-07)
Online Monitoring for 3D Printable Geopolymers:
Automated Slug Test Analysis with Image Analysis Revealing Mixing Sequence Effects - Fasihi Ali, Libre Nicolas (2025-05)
Towards Accurate In-Situ Static Yield Stress Measurement for 3D Concrete Printing:
A Study on Novel Fast Penetration Test - Zat Tuani, Schuster Sílvio, Schmitt Duarte Ester, Freitas Daudt Natália et al. (2025-03)
Rheological Properties of High-Performance Concrete Reinforced with Microfibers and Their Effects on 3D Printing Process - Sando Mona, Stephan Dietmar (2025-02)
The Role of Mixing Sequence in Shaping the 3D-Printability of Geopolymers - Ducoulombier Nicolas, Bono Victor, Kachkouch Fatima, Jacquet Yohan et al. (2025-01)
From Laboratory to Practice - Ji Yianliang, Pott Ursula, Mezhov Alexander, Rößler Christiane et al. (2024-11)
Modelling and Experimental Study on Static Yield-Stress-Evolution and Structural Build-Up of Cement-Paste in Early-Stage of Cement Hydration - Kaszyńska Maria, Skibicki Szymon (2024-11)
Sustainable Development Approach for 3D Concrete Printing - Althoey Fadi, Zaid Osama, Ahmed Bilal, Elhadi Khaled (2024-10)
Impact of Double Hooked Steel-Fibers and Nano-Kaolin-Clay on Fresh Properties of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete - Dörfler Kathrin, Dielemans Gido, Leutenegger Stefan, Jenny Ercan et al. (2024-09)
Advancing Construction in Existing Contexts:
Prospects and Barriers of 3D Printing with Mobile Robots for Building Maintenance and Repair - Wolfs Robert, Bos Derk, Caron Jean-François, Gerke Markus et al. (2024-08)
On-Line and In-Line Quality-Assessment Across All Scale Levels of 3D Concrete Printing - Sando Mona, Stephan Dietmar (2024-06)
The Development of a Fly-Ash-Based Geopolymer for Extrusion-Based 3D Printing, Along with a Printability Prediction Method - Jakob Cordula, Rudolph Jennifer, Wolf Julian, Neubauer Jürgen (2024-06)
Hydration of a Two-Component CSA-OPC-Mix-Timing of Component Blending & Setting-on-Demand - Basha Shaik, Nugraha Joshua, Rehman Atta, Choi Kichang et al. (2024-06)
Structuration and Yield Strength Characterization of Hybrid Alkali-Activated Cement Composites for Ultra-Rapid 3D Construction Printing - Tao Yaxin, Zhou Jiangang, Cui Weijiu, Shi Xinyu et al. (2024-04)
Numerical Assessment of Plastic Yielding in Extrusion-Based 3D Concrete Printing - Mechtcherine Viktor, Kuhn Alexander, Mai (née Dressler) Inka, Nerella Venkatesh et al. (2024-03)
Additive Manufacturing with Concrete:
Guidelines for Planning and Implementing Projects - Sheng Zhaoliang, Zhu Binrong, Cai Jingming, Li Xuesen et al. (2024-03)
Development of a Novel Extrusion-Device to Improve the Printability of 3D Printable Geopolymer Concrete - Sun Yubo, Mohan Manu, Tao Yaxin, Zhang Yi et al. (2024-02)
A Conceptual Design of Two-Stream Alkali-Activated Materials - Wang Xiaonan, Li Wengui, Guo Yipu, Kashani Alireza et al. (2024-02)
Concrete 3D Printing Technology in Sustainable Construction:
A Review on Raw Materials, Concrete Types and Performances - Tao Yaxin, Mohan Manu, Rahul Attupurathu, Schutter Geert et al. (2024-02)
Hydration and Microstructure of Calcium-Sulfoaluminate-Portland-Cement Binder Systems for Set-on-Demand Applications - Rehman Atta, Kim Ik-Gyeom, Kim Jung-Hoon (2024-01)
Towards Full Automation in 3D Concrete Printing Construction:
Development of an Automated and In-Line Test-Method for In-Situ Assessment of Structural Build-Up and Quality of Concrete - Fasihi Ali, Libre Nicolas (2024-01)
From Pumping to Deposition:
A Comprehensive Review of Test-Methods for Characterizing Concrete-Printability - Tao Yaxin, Mohan Manu, Rahul Attupurathu, Schutter Geert et al. (2023-10)
Influence of Rheology on Mixing Homogeneity and Mechanical Behavior of Twin-Pipe 3D Printable Concrete - Rehman Atta, Perrot Arnaud, Birru Bizu, Kim Jung-Hoon (2023-09)
Recommendations for Quality-Control in Industrial 3D Concrete Printing Construction with Mono-Component Concrete:
A Critical Evaluation of Ten Test-Methods and the Introduction of the Performance-Index - Matos Paulo, Zat Tuani, Lima Marcelo, Neto José et al. (2023-08)
Effect of the Superplasticizer-Addition Time on the Fresh Properties of 3D Printed Limestone-Calcined-Clay-Cement (LC³) Concrete - Pott Ursula, Jakob Cordula, Dorn Tobias, Stephan Dietmar (2023-07)
Investigation of a Shotcrete-Accelerator for Targeted Control of Material-Properties for 3D Concrete Printing Injection-Method - Pott Ursula, Jakob Cordula, Wolf Julian, Stephan Dietmar (2023-06)
Comparison of Physical and Physico-Chemical Methods for 3D Printing Application with the Focus on the Unconfined Uniaxial Compression-Test - Kruppa Henning, Kalthoff Matthias, Neef Tobias, Reißig Silvia et al. (2023-06)
Alkali-Activated Binder-Requirements for Extrusion and 3D Printing of Carbon-Reinforced Concrete - Tao Yaxin, Mohan Manu, Rahul Attupurathu, Schutter Geert et al. (2023-02)
Development of a Calcium Sulfoaluminate-Portland Cement Binary System for Twin-Pipe 3D Concrete Printing - Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2022-10)
In-Line Activation of Geopolymer-Slurry for Concrete 3D Printing - Kalthoff Matthias, Raupach Michael, Matschei Thomas (2022-09)
Investigation of Rheological Test-Methods for the Suitability of Mortars for Manufacturing of Textile-Reinforced Concrete Using a Laboratory Mortar-Extruder:
LabMorTex - Boddepalli Uday, Panda Biranchi, Gandhi Indu (2022-09)
Rheology and Printability of Portland-Cement-Based Materials:
A Review - Pott Ursula, Wolf Christoph, Petryna Yuri, Stephan Dietmar (2022-09)
Evaluation of the Unconfined Uniaxial Compression-Test to Study the Evolution of Apparent Printable Mortar-Properties During the Early-Age Transition-Regime - Roussel Nicolas, Buswell Richard, Ducoulombier Nicolas, Ivanova Irina et al. (2022-06)
Assessing the Fresh Properties of Printable Cement-Based Materials:
High-Potential Tests for Quality-Control - Moeini Mohammad, Hosseinpoor Masoud, Yahia Ammar (2022-04)
3D Printing of Cement-Based Materials with Adapted Buildability - Reiter Lex, Wangler Timothy, Roussel Nicolas, Flatt Robert (2022-04)
Slow Penetration for Characterizing Concrete for Digital Fabrication - Ivanova Irina, Ivaniuk Egor, Bisetti Sameercharan, Nerella Venkatesh et al. (2022-03)
Comparison Between Methods for Indirect Assessment of Buildability in Fresh 3D Printed Mortar and Concrete
BibTeX
@article{pott_step.2021.PTaaFMtDYSaSBUf3PoCM,
author = "Ursula Pott and Dietmar Stephan",
title = "Penetration-Test as a Fast Method to Determine Yield-Stress and Structural Build-Up for 3D Printing of Cementitious Materials",
doi = "10.1016/j.cemconcomp.2021.104066",
year = "2021",
journal = "Cement and Concrete Composites",
volume = "121",
}
Formatted Citation
U. Pott and D. Stephan, “Penetration-Test as a Fast Method to Determine Yield-Stress and Structural Build-Up for 3D Printing of Cementitious Materials”, Cement and Concrete Composites, vol. 121, 2021, doi: 10.1016/j.cemconcomp.2021.104066.
Pott, Ursula, and Dietmar Stephan. “Penetration-Test as a Fast Method to Determine Yield-Stress and Structural Build-Up for 3D Printing of Cementitious Materials”. Cement and Concrete Composites 121 (2021). https://doi.org/10.1016/j.cemconcomp.2021.104066.