Skip to content

Evaluation of Anisotropy and Statistical Parameters of Compressive Strength for 3D Printed Concrete (2024-07)

10.1016/j.conbuildmat.2024.137417

 Zhang Kaijian, Lin Wenqiang, Zhang Qingtian, Wang Dehui, Luo Surong
Journal Article - Construction and Building Materials, Vol. 440, No. 137417

Abstract

The compressive strength data of 3D printed concrete (3DPC) in X (Print direction), Y (Adjacent stripes), and Z (Stacked stripes) were collected and analyzed to evaluate its anisotropic behavior and statistical parameters. Similar to conventional cast concrete, there is a linear relationship between the compressive strength of 3DPC and the binder-to-water ratio (B/W). For the normalized strength data, the average ratios of X/C, Y/C, and Z/C at 28 days are 0.87, 0.80, and 0.82 respectively, indicating a decrease in the compressive strength and anisotropy compared to cast concrete. Compared to the coefficient of variation (COV) of cast specimens mentioned in the specifications, there is an increase of 4.3–69 %. The weak interfaces and unique pore shapes in 3DPC interact to cause stress concentration and redistribution of internal stresses, resulting in decreased compressive strength, anisotropy, and variability. This investigation can provide material parameters for studying the structural performance of 3DPC components.

84 References

  1. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
    Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing
  2. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Khayat Kamal et al. (2021-10)
    Digital Fabrication of Eco-Friendly Ultra-High-Performance Fiber-Reinforced Concrete
  3. Bai Gang, Wang Li, Ma Guowei, Sanjayan Jay et al. (2021-03)
    3D Printing Eco-Friendly Concrete Containing Under-Utilised and Waste Solids as Aggregates
  4. Bai Meiyan, Wu Yuching, Xiao Jianzhuang, Ding Tao et al. (2023-04)
    Workability and Hardened Properties of 3D Printed Engineered Cementitious Composites Incorporating Recycled Sand and PE-Fibers
  5. Bhardwaj Abhinav, Jones Scott, Kalantar Negar, Pei Zhijian et al. (2019-06)
    Additive Manufacturing Processes for Infrastructure Construction:
    A Review
  6. Bong Shin, Nematollahi Behzad, Nazari Ali, Xia Ming et al. (2019-03)
    Method of Optimization for Ambient Temperature Cured Sustainable Geopolymers for 3D Printing Construction Applications
  7. Bong Shin, Nematollahi Behzad, Nerella Venkatesh, Mechtcherine Viktor (2022-09)
    Method of Formulating 3D Printable Strain-Hardening Alkali-Activated Composites for Additive Construction
  8. Bos Freek, Wolfs Robert, Salet Theo (2020-06)
    CCR Digital Concrete 2020 SI:
    Editorial
  9. Brooks Adam, He Yawen, Farzadnia Nima, Seyfimakrani Shayan et al. (2022-03)
    Incorporating PCM-Enabled Thermal Energy Storage into 3D Printable Cementitious Composites
  10. Che Yujun, Yang Huashan (2022-10)
    Hydration Products, Pore-Structure, and Compressive Strength of Extrusion-Based 3D Printed Cement-Pastes Containing Nano-Calcium-Carbonate
  11. Chen Yu, Çopuroğlu Oğuzhan, Rodríguez Claudia, Filho Fernando et al. (2021-02)
    Characterization of Air-Void Systems in 3D Printed Cementitious Materials Using Optical Image Scanning and X-Ray Computed Tomography
  12. Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
    Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture
  13. Chen Yu, Jansen Koen, Zhang Hongzhi, Rodríguez Claudia et al. (2020-07)
    Effect of Printing-Parameters on Inter-Layer Bond Strength of 3D Printed Limestone-Calcined-Clay-Based Cementitious Materials:
    An Experimental and Numerical Study
  14. Chen Yu, Rodríguez Claudia, Li Zhenming, Chen Boyu et al. (2020-07)
    Effect of Different Grade Levels of Calcined Clays on Fresh and Hardened Properties of Ternary-Blended Cementitious Materials for 3D Printing
  15. Chen Yidong, Zhang Yunsheng, Pang Bo, Wang Dafu et al. (2022-04)
    Steel-Fiber Orientational Distribution and Effects on 3D Printed Concrete with Coarse Aggregate
  16. Chen Yuning, Zhang Yamei, Xie Yudong, Zhang Zedi et al. (2022-09)
    Unraveling Pore-Structure Alternations in 3D Printed Geopolymer Concrete and Corresponding Impacts on Macro-Properties
  17. Chu Shaohua, Li Leo, Kwan Albert (2020-09)
    Development of Extrudable High-Strength Fiber-Reinforced Concrete Incorporating Nano-Calcium-Carbonate
  18. Ding Tao, Xiao Jianzhuang, Zou Shuai, Wang Yu (2020-06)
    Hardened Properties of Layered 3D Printed Concrete with Recycled Sand
  19. Duan Zhenhua, Li Lei, Yao Qinye, Zou Shuai et al. (2022-08)
    Effect of Metakaolin on the Fresh and Hardened Properties of 3D Printed Cementitious Composite
  20. Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2020-05)
    Mechanical Behavior of Printed Strain-Hardening Cementitious Composites
  21. Hambach Manuel, Möller Hendrik, Neumann Thomas, Volkmer Dirk (2016-08)
    Portland-Cement-Paste with Aligned Carbon-Fibers Exhibiting Exceptionally High Flexural Strength (>100 MPa)
  22. Hambach Manuel, Volkmer Dirk (2017-02)
    Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste
  23. He Yawen, Zhang Yamei, Zhang Chao, Zhou Hongyu (2020-05)
    Energy-Saving-Potential of 3D Printed Concrete Building with Integrated Living Wall
  24. Heever Marchant, Plessis Anton, Kruger Jacques, Zijl Gideon (2022-01)
    Evaluating the Effects of Porosity on the Mechanical Properties of Extrusion-Based 3D Printed Concrete
  25. Ivaniuk Egor, Ivanova Irina, Sokolov Dmitrii, Tošić Zlata et al. (2022-02)
    Application-Driven Material-Design of Printable Strain-Hardening Cementitious Composites
  26. Kan Deyuan, Liu Guifeng, Cao Shuang, Chen Zhengfa et al. (2022-11)
    Mechanical Properties and Pore-Structure of Multi-Walled Carbon-Nano-Tube-Reinforced Reactive Powder-Concrete for Three-Dimensional Printing Manufactured by Material-Extrusion
  27. Kruger Jacques, Plessis Anton, Zijl Gideon (2020-12)
    An Investigation into the Porosity of Extrusion-Based 3D Printed Concrete
  28. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  29. Lee Hojae, Kim Jang-Ho, Moon Jae-Heum, Kim Won-Woo et al. (2019-08)
    Correlation Between Pore Characteristics and Tensile Bond Strength of Additive Manufactured Mortar Using X-Ray Computed Tomography
  30. Li Leo, Xiao Bofeng, Cheng Cong-Mi, Xie Hui-Zhu et al. (2023-09)
    Adding Glass-Fibers to 3D Printable Mortar:
    Effects on Printability and Material-Anisotropy
  31. Li Leo, Xiao Bofeng, Fang Z., Xiong Z. et al. (2020-11)
    Feasibility of Glass-Basalt Fiber-Reinforced Seawater Coral Sand Mortar for 3D Printing
  32. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  33. Liu Bing, Liu Xiaoyan, Li Guangtao, Geng Songyuan et al. (2022-09)
    Study on Anisotropy of 3D Printing PVA-Fiber-Reinforced Concrete Using Destructive and Non-Destructive Testing Methods
  34. Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-09)
    3D Printing Concrete with Recycled Coarse Aggregates:
    The Influence of Pore-Structure on Inter-Layer Adhesion
  35. Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-06)
    Hardened Properties of 3D Printed Concrete with Recycled Coarse Aggregate
  36. Liu Chao, Xiong Yuanliang, Chen Yuning, Jia Lutao et al. (2022-01)
    Effect of Sulphoaluminate Cement on Fresh and Hardened Properties of 3D Printing Foamed Concrete
  37. Liu Chenkang, Yue Songlin, Zhou Cong, Sun Honglei et al. (2021-08)
    Anisotropic Mechanical Properties of Extrusion-Based 3D Printed Layered Concrete
  38. Liu Chao, Zhang Yamei, Banthia Nemkumar (2023-05)
    Unveiling Pore Formation and Its Influence on Micromechanical Property and Stress-Distribution of 3D Printed Foam-Concrete Modified with Hydroxypropyl-Methylcellulose and Silica-Fume
  39. Liu Chao, Zhang Rongfei, Liu Huawei, He Chunhui et al. (2021-11)
    Analysis of the Mechanical Performance and Damage Mechanism for 3D Printed Concrete Based on Pore-Structure
  40. Ma Guowei, A Ruhan, Xie Panpan, Pan Zhu et al. (2022-01)
    3D Printable Aerogel-Incorporated Concrete:
    Anisotropy Influence on Physical, Mechanical, and Thermal Insulation Properties
  41. Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
    Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing
  42. Mechtcherine Viktor, Nerella Venkatesh, Will Frank, Näther Mathias et al. (2019-08)
    Large-Scale Digital Concrete Construction:
    CONPrint3D Concept for On-Site, Monolithic 3D Printing
  43. Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
    Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing
  44. Özalp Fatih, Yılmaz Halit (2020-03)
    Fresh and Hardened Properties of 3D High-Strength Printing Concrete and Its Recent Applications
  45. Pan Tinghong, Teng Huaijin, Liao Hengcheng, Jiang Yaqing et al. (2022-03)
    Effect of Shaping Plate Apparatus on Mechanical Properties of 3D Printed Cement-Based Materials:
    Experimental and Numerical Studies
  46. Panda Biranchi, Bhagath Singh Gangapatnam, Unluer Cise, Tan Ming (2019-02)
    Synthesis and Characterization of One-Part Geopolymers for Extrusion-Based 3D Concrete Printing
  47. Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
    Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar
  48. Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
    Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material
  49. Panda Biranchi, Tay Yi, Paul Suvash, Tan Ming (2018-05)
    Current Challenges and Future Potential of 3D Concrete Printing
  50. Pasupathy Kirubajiny, Ramakrishnan Sayanthan, Sanjayan Jay (2022-07)
    Enhancing the Properties of Foam-Concrete 3D Printing Using Porous Aggregates
  51. Pasupathy Kirubajiny, Ramakrishnan Sayanthan, Sanjayan Jay (2023-01)
    3D Concrete Printing of Eco-Friendly Geopolymer Containing Brick Waste
  52. Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
    Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction
  53. Pham Luong, Lu Guoxing, Tran Jonathan (2022-02)
    Influences of Printing-Pattern on Mechanical Performance of Three-Dimensional-Printed Fiber-Reinforced Concrete
  54. Pham Luong, Tran Jonathan, Sanjayan Jay (2020-04)
    Steel-Fiber-Reinforced 3D Printed Concrete:
    Influence of Fiber Sizes on Mechanical Performance
  55. Rahul Attupurathu, Mohan Manu, Schutter Geert, Tittelboom Kim (2021-10)
    3D Printable Concrete with Natural and Recycled Coarse Aggregates:
    Rheological, Mechanical and Shrinkage Behavior
  56. Rajeev Pathmanathan, Ramesh Akilesh, Navaratnam Satheeskumar, Sanjayan Jay (2023-04)
    Using Fiber Recovered from Face Mask Waste to Improve Printability in 3D Concrete Printing
  57. Rashid Ans, Khan Shoukat, Ghamdi Sami, Koç Muammer (2020-06)
    Additive Manufacturing:
    Technology, Applications, Markets, and Opportunities for the Built Environment
  58. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  59. Shen Yuhang, Lin Li, Wei Shengjie, Yan Jie et al. (2022-12)
    Research on the Preparation and Mechanical Properties of Solidified 3D Printed Concrete Materials
  60. Singh Amardeep, Liu Qiong, Xiao Jianzhuang, Lyu Qifeng (2022-02)
    Mechanical and Macrostructural Properties of 3D Printed Concrete Dosed with Steel-Fibers under Different Loading-Direction
  61. Srinivas Dodda, Dey Dhrutiman, Panda Biranchi, Sitharam Thallak (2022-12)
    Printability, Thermal and Compressive Strength Properties of Cementitious Materials:
    A Comparative Study with Silica-Fume and Limestone
  62. Sun Xiaoyan, Wang Qun, Wang Hailong, Chen Long (2020-03)
    Influence of Multi-Walled Nanotubes on the Fresh and Hardened Properties of a 3D Printing PVA Mortar Ink
  63. Sun Bochao, Zeng Qiang, Wang Dianchao, Zhao Weijian (2022-10)
    Sustainable 3D Printed Mortar with CO2 Pretreated Recycled Fine Aggregates
  64. Sun Xiaoyan, Zhou Jiawei, Wang Qun, Shi Jiangpeng et al. (2021-11)
    PVA-Fiber-Reinforced High-Strength Cementitious Composite for 3D Printing:
    Mechanical Properties and Durability
  65. Surehali Sahil, Tripathi Avinaya, Neithalath Narayanan (2023-08)
    Anisotropy in Additively Manufactured Concrete Specimens Under Compressive Loading:
    Quantification of the Effects of Layer-Height and Fiber-Reinforcement
  66. Wang Ziyue, Chen Zixuan, Xiao Jianzhuang, Ding Tao (2023-03)
    Experimental Study on Interfacial Shear Behavior of 3D Printed Recycled Mortar
  67. Wang Xianggang, Jia Lutao, Jia Zijian, Zhang Chao et al. (2022-06)
    Optimization of 3D Printing Concrete with Coarse Aggregate via Proper Mix-Design and Printing-Process
  68. Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
    Digital Concrete:
    A Review
  69. Wang Bolin, Yao Xiaofei, Yang Min, Zhang Runhong et al. (2022-04)
    Mechanical Performance of 3D Printed Concrete in Steam-Curing Conditions
  70. Xiao Jianzhuang, Han Nv, Zhang Lihai, Zou Shuai (2021-05)
    Mechanical and Microstructural Evolution of 3D Printed Concrete with Polyethylene-Fiber and Recycled Sand at Elevated Temperatures
  71. Xiao Jianzhuang, Liu Haoran, Ding Tao (2020-11)
    Finite-Element-Analysis on the Anisotropic Behavior of 3D Printed Concrete under Compression and Flexure
  72. Xiao Jianzhuang, Lv Zhenyuan, Duan Zhenhua, Hou Shaodan (2022-03)
    Study on Preparation and Mechanical Properties of 3D Printed Concrete with Different Aggregate-Combinations
  73. Xiao Jianzhuang, Zou Shuai, Ding Tao, Duan Zhenhua et al. (2021-08)
    Fiber-Reinforced Mortar with 100% Recycled Fine Aggregates:
    A Cleaner Perspective on 3D Printing
  74. Xiao Jianzhuang, Zou Shuai, Yu Ying, Wang Yu et al. (2020-09)
    3D Recycled Mortar Printing:
    System-Development, Process-Design, Material-Properties and On-Site-Printing
  75. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
    Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete
  76. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-01)
    Fresh and Anisotropic-Mechanical Properties of 3D Printable Ultra-High-Ductile Concrete with Crumb-Rubber
  77. Yeon Kyu-Seok, Kim Kwan, Yeon Jaeheum, Lee Hee (2019-08)
    Compressive and Flexural Strengths of EVA-Modified Mortars for 3D Additive Construction
  78. Yu Shiwei, Xia Ming, Sanjayan Jay, Yang Lin et al. (2021-07)
    Microstructural Characterization of 3D Printed Concrete
  79. Yuan Qiang, Li Zemin, Zhou Dajun, Huang Tingjie et al. (2019-08)
    A Feasible Method for Measuring the Buildability of Fresh 3D Printing Mortar
  80. Zhang Yu, Zhang Yunsheng, Yang Lin, Liu Guojian et al. (2021-02)
    Hardened Properties and Durability of Large-Scale 3D Printed Cement-Based Materials
  81. Zhang Yi, Zhu Yanmei, Ren Qiang, He Bei et al. (2023-08)
    Comparison of Printability and Mechanical Properties of Rigid and Flexible Fiber-Reinforced 3D Printed Cement-Based Materials
  82. Zhao Yasong, Gao Yangyunzhi, Chen Gaofeng, Li Shujun et al. (2023-04)
    Development of Low-Carbon Materials from GGBS and Clay-Brick-Powder for 3D Concrete Printing
  83. Zhou Jiehang, Lai Jianzhong, Du Longyu, Wu Kai et al. (2021-12)
    Effect of Directionally Distributed Steel-Fiber on Static and Dynamic Properties of 3D Printed Cementitious Composite
  84. Zhou Wen, Zhang Yamei, Ma Lei, Li Victor (2022-04)
    Influence of Printing Parameters on 3D Printing Engineered Cementitious Composites

24 Citations

  1. Gil-Lopez Tomas, Amirfiroozkoohi Alireza, Valiente López María, Verdu-Vazquez Maria (2026-01)
    The Impact of 3D Printing on Mortar Strength and Flexibility:
    A Comparative Analysis of Conventional and Additive Manufacturing Techniques
  2. Iqbal Imtiaz, Kasim Tala, Besklubova Svetlana, Mustafa Ali et al. (2025-12)
    Passive Determination of Anisotropic Compressive Strength of 3D Printed Concrete Using Multiple Neural Networks Enhanced with Explainable Machine Learning (XML)
  3. Zhang Hui, Wu Jie, Huang Bo-Tao, Yu Rena et al. (2025-11)
    Cross-Scale Mechanisms of Anisotropy in 3D-Printed Ultra-High-Performance Concrete
  4. Wang Huai, Li Xiulin, Gong Hao, Xu Jingjie et al. (2025-10)
    Thermal and Mechanical Properties of 3D-Printed Fiber-Reinforced Lightweight Concrete Based on Air Entrainment and Hollow Glass Microspheres
  5. Rabul H., Prem Prabhat, Ravichandran Darssni, Rathan RT Arjun (2025-09)
    Development of Fly Ash and Limestone Calcined Clay-Based Mixtures for Concrete 3D Printing
  6. Ozturk Onur, Lunsford Caleb, Strait James, Nair Sriramya (2025-08)
    Breaking Barriers in Underwater Construction:
    A Two-Stage 3D Printing System with On-Demand Material Adaptation
  7. Si Wen, Khan Mehran, McNally Ciaran (2025-08)
    Effect of Nano Silica with High Replacement of GGBS on Enhancing Mechanical Properties and Rheology of 3D Printed Concrete
  8. Medeiros Fernanda, Anjos Marcos, Maia José, Dias Leonardo et al. (2025-08)
    Effect of Sisal Fibers on the Behavior of 3D-Printed Cementitious Mixtures Exposed to High Temperatures
  9. Yerikania Utami, Du Hongjian, Poh Leong (2025-07)
    A Comprehensive Experimental Investigation of Anisotropy Behavior on Highly Carbon-Minimized 3D Printed Concrete
  10. Ding Shengxuan, Li Jiren, Wang Mingqiang (2025-07)
    Study on Mechanical Properties of Composite Basalt Fiber 3D-Printed Concrete Based on 3D Meso-Structure
  11. Kaur Zinnia, Goyal Shweta, Kwatra Naveen, Bera Tarun (2025-07)
    Pore Structure Analysis and Durability Performance of Sustainable 3D Printed Concrete Incorporating Fly Ash and Limestone Calcined Clay Based Binders
  12. Mostert Jean-Pierre, Kruger Jacques (2025-07)
    Reducing Anisotropic Behaviour of 3D Printed Concrete Through Interlocked Filaments
  13. Mishra Sanjeet, Upadhyay Bikash, Das Bibhuti (2025-06)
    3D Printing Aspects of Fly Ash and GGBS Admixed Binary and Ternary Blended Cementitious Mortar
  14. Ding Shengxuan, Li Jiren, Liu Yiming (2025-06)
    Study on Mechanical Properties and Environmental Benefits of 3D Printed Lean Magnesium Ore Concrete Filled Columns Based on Three-Dimensional Meso-Structure
  15. Ye Huzi, He Qianpeng, Ping Pengxin, Pan Jinlong et al. (2025-06)
    Anisotropic Flexural Behavior and Energy Absorption of 3D Printed Engineered Cementitious Composites (3DP-ECC) Beams Under Low-Velocity Impact
  16. Wang Guihua, Zhou Jiguo, Liu Haoyun, Zhang Jianming (2025-05)
    Rheological Properties and Mechanical Durability of 3D-Printed Concrete Based on Low-Field NMR
  17. Zhou Biao, Zhou Hongru, Yoshioka Hideki, Noguchi Takafumi et al. (2025-04)
    Mechanical and Microstructure Evolution of 3D Printed Concrete Interlayer at Elevated Temperatures
  18. Yuan Yong, Sheng Ruyi, Yao Xupeng, Pichler Bernhard et al. (2025-03)
    A Three-Step Development Strategy for 3D Printable Concrete Containing Coarse Aggregates
  19. Liu Chao, Liu Huawei, Wu Yiwen, Wu Jian et al. (2025-02)
    Effect of X-Ray CT Characterized Pore Structure on the Freeze-Thaw Resistance of 3D Printed Concrete with Recycled Coarse Aggregate
  20. Khan Mirza, Ahmed Aayzaz, Ali Tariq, Qureshi Muhammad et al. (2024-12)
    Comprehensive Review of 3D Printed Concrete, Life Cycle Assessment, AI and ML Models:
    Materials, Engineered Properties and Techniques for Additive Manufacturing
  21. Liu Huawei, Wang Yifei, Zhu Chao, Wu Yiwen et al. (2024-11)
    Design of 3D Printed Concrete Masonry for Wall Structures:
    Mechanical Behavior and Strength Calculation Methods Under Various Loads
  22. Park Keunhyoung, Memari Ali, Hojati Maryam, Radlińska Aleksandra et al. (2024-10)
    Effects of Anisotropic Mechanical Behavior on Nominal Moment Capability of 3D Printed Concrete Beam with Reinforcement
  23. Over Derya, Ozbakan Nesil, Bustani Mehmet, Karali Bulut (2024-10)
    An Investigation of Rheological Properties and Sustainability of Various 3D Printing Concrete Mixtures with Alternative Binders and Rheological Modifiers
  24. Ma Xin-Rui, Wang Xian-Lin, Chen Shi-Zi (2024-09)
    Trustworthy Machine Learning-Enhanced 3D Concrete Printing:
    Predicting Bond Strength and Designing Reinforcement Embedment Length

BibTeX
@article{zhan_lin_zhan_wang.2024.EoAaSPoCSf3PC,
  author            = "Kaijian Zhang and Wenqiang Lin and Qingtian Zhang and Dehui Wang and Surong Luo",
  title             = "Evaluation of Anisotropy and Statistical Parameters of Compressive Strength for 3D Printed Concrete",
  doi               = "10.1016/j.conbuildmat.2024.137417",
  year              = "2024",
  journal           = "Construction and Building Materials",
  volume            = "440",
  pages             = "137417",
}
Formatted Citation

K. Zhang, W. Lin, Q. Zhang, D. Wang and S. Luo, “Evaluation of Anisotropy and Statistical Parameters of Compressive Strength for 3D Printed Concrete”, Construction and Building Materials, vol. 440, p. 137417, 2024, doi: 10.1016/j.conbuildmat.2024.137417.

Zhang, Kaijian, Wenqiang Lin, Qingtian Zhang, Dehui Wang, and Surong Luo. “Evaluation of Anisotropy and Statistical Parameters of Compressive Strength for 3D Printed Concrete”. Construction and Building Materials 440 (2024): 137417. https://doi.org/10.1016/j.conbuildmat.2024.137417.