Skip to content

An Experimental Study on the Influence of Waste-Rubber-Particles on the Compressive, Flexural and Impact Properties of 3D Printable Sustainable Cementitious Composites (2023-10)

10.1016/j.cscm.2023.e02607

 Zhu Binrong, Wang Yufei,  Sun Junbo,  Wei Yang, Ye Huzi,  Zhao Hongyu,  Wang Xiangyu
Journal Article - Case Studies in Construction Materials, Vol. 19, No. e02607

Abstract

To promote the sustainable development of the construction industry, this study examined the influence of the rubber particles addition on the fresh and hardened engineering properties of rubber particle (RP) modified 3D printable sustainable cementitious composites (3DPSCC) incorporating polypropylene (PP) fibers, in which RP derived from waste tires partially replaced sand between 0% and 100% volume replacement. A series of flowability tests, printing tests and mechanical tests in different loading directions were carried out to investigate the printability and anisotropic mechanical properties of the 3DPSCC. The results show that all test specimens can be successfully printed due to their good workability, extrudability, and buildability in the fresh state. The compressive, flexural strength, and impact strengths of 3DPSCC, in general, decreased with the increasing RP content and exhibited obvious anisotropy, which could be owing to the presence of both inter-layer and intra-layer interfaces in each group of specimens during the printing process. The impact resistant of the modified specimens improved with the addition of RP, as the average maximum displacement gradually increased from 0.41 mm to 0.92 mm, despite the weakening strength. The optimal mixture was regarded as RP-40 (40% RP replacement) exhibiting comparable anisotropic compressive strength (higher than 30 MPa), enough anisotropic flexural strength (higher than 4 MPa), and superior energy dissipation capacity (highest among all 3DPSCC), which can meet the strength requirement of concrete (i.e., 25 MPa for steel reinforced concrete structure) and is suitable for structural applications as a sustainable impact-resistant material.

41 References

  1. Aslani Farhad, Dale Ryan, Hamidi Fatemeh, Valizadeh Afsaneh (2022-05)
    Mechanical and Shrinkage Performance of 3D Printed Rubberised Engineered Cementitious Composites
  2. Bai Gang, Wang Li, Ma Guowei, Sanjayan Jay et al. (2021-03)
    3D Printing Eco-Friendly Concrete Containing Under-Utilised and Waste Solids as Aggregates
  3. Bong Shin, Xia Ming, Nematollahi Behzad, Shi Caijun (2021-04)
    Ambient Temperature Cured ‘Just-Add-Water’ Geopolymer for 3D Concrete Printing Applications
  4. Buswell Richard, Silva Wilson, Bos Freek, Schipper Roel et al. (2020-05)
    A Process Classification Framework for Defining and Describing Digital Fabrication with Concrete
  5. Chen Yu, He Shan, Zhang Yu, Wan Zhi et al. (2021-08)
    3D Printing of Calcined-Clay-Limestone-Based Cementitious Materials
  6. Chen Mingxu, Li Laibo, Wang Jiaao, Huang Yongbo et al. (2019-10)
    Rheological Parameters and Building Time of 3D Printing Sulphoaluminate-Cement-Paste Modified by Retarder and Diatomite
  7. Das Arnesh, Reiter Lex, Mantellato Sara, Flatt Robert (2022-10)
    Early-Age Rheology and Hydration-Control of Ternary Binders for 3D Printing Applications
  8. Ding Tao, Xiao Jianzhuang, Zou Shuai, Wang Yu (2020-06)
    Hardened Properties of Layered 3D Printed Concrete with Recycled Sand
  9. Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
    A Review of 3D Printed Concrete:
    Performance-Requirements, Testing Measurements and Mix-Design
  10. Hou Shaodan, Duan Zhenhua, Ye Taohua, Zou Shuai et al. (2023-06)
    Mechanical Properties and Pore-Structure of 3D Printed Mortar with Recycled Powder
  11. Hou Shaodan, Xiao Jianzhuang, Duan Zhenhua, Ma Guowei (2021-10)
    Fresh Properties of 3D Printed Mortar with Recycled Powder
  12. Khalil Abdullah, Wang Xiangyu, Celik Kemal (2020-02)
    3D Printable Magnesium Oxide Concrete:
    Towards Sustainable Modern Architecture
  13. Liu Xiongfei, Li Qi, Wang Fang, Ma Guowei (2022-07)
    Systematic Approach for Printability Evaluation and Mechanical Property Optimization of Spray-Based 3D Printed Mortar
  14. Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-06)
    Hardened Properties of 3D Printed Concrete with Recycled Coarse Aggregate
  15. Liu Junli, Setunge Sujeeva, Tran Jonathan (2022-07)
    3D Concrete Printing with Cement-Coated Recycled Crumb Rubber:
    Compressive and Microstructural Properties
  16. Liu Miao, Wang Li, Ma Guowei, Li Weiwei et al. (2022-11)
    U-Type Steel-Wire-Mesh for the Flexural Performance Enhancement of 3D Printed Concrete:
    A Novel Reinforcing Approach
  17. Ma Guowei, A Ruhan, Xie Panpan, Pan Zhu et al. (2022-01)
    3D Printable Aerogel-Incorporated Concrete:
    Anisotropy Influence on Physical, Mechanical, and Thermal Insulation Properties
  18. Ma Guowei, Buswell Richard, Silva Wilson, Wang Li et al. (2022-03)
    Technology Readiness:
    A Global Snapshot of 3D Concrete Printing and the Frontiers for Development
  19. Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
    Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing
  20. Panda Biranchi, Tan Ming (2018-03)
    Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing
  21. Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
    Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing
  22. Pasupathy Kirubajiny, Ramakrishnan Sayanthan, Sanjayan Jay (2023-01)
    3D Concrete Printing of Eco-Friendly Geopolymer Containing Brick Waste
  23. Rahul Attupurathu, Sharma Abhishek, Santhanam Manu (2020-01)
    A Desorptivity-Based Approach for the Assessment of Phase Separation During Extrusion of Cementitious Materials
  24. Sambucci Matteo, Biblioteca Ilario, Valente Marco (2023-01)
    Life Cycle Assessment (LCA) of 3D Concrete Printing and Casting Processes for Cementitious Materials Incorporating Ground Waste Tire Rubber
  25. Sambucci Matteo, Valente Marco (2021-06)
    Influence of Waste-Tire-Rubber-Particles-Size on the Microstructural, Mechanical, and Acoustic Insulation Properties of 3D Printable Cement Mortars
  26. Sun Junbo, Aslani Farhad, Lu Jenny, Wang Lining et al. (2021-06)
    Fiber-Reinforced Lightweight Engineered Cementitious Composites for 3D Concrete Printing
  27. Sun Junbo, Huang Yimiao, Aslani Farhad, Wang Xiangyu et al. (2021-05)
    Mechanical Enhancement for EMW-Absorbing Cementitious Material Using 3D Concrete Printing
  28. Sun Bochao, Zeng Qiang, Wang Dianchao, Zhao Weijian (2022-10)
    Sustainable 3D Printed Mortar with CO2 Pretreated Recycled Fine Aggregates
  29. Tay Yi, Qian Ye, Tan Ming (2019-05)
    Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test
  30. Ting Guan, Quah Tan, Lim Jian, Tay Yi et al. (2022-01)
    Extrudable Region Parametrical Study of 3D Printable Concrete Using Recycled-Glass Concrete
  31. Ting Guan, Tay Yi, Tan Ming (2021-04)
    Experimental Measurement on the Effects of Recycled Glass-Cullets as Aggregates for Construction 3D Printing
  32. Valente Marco, Sambucci Matteo, Chougan Mehdi, Ghaffar Seyed (2023-04)
    Composite Alkali-Activated Materials with Waste-Tire-Rubber Designed for Additive Manufacturing:
    An Eco-Sustainable and Energy Saving Approach
  33. Wan Qian, Wang Li, Ma Guowei (2022-07)
    Continuous and Adaptable Printing Path Based on Transfinite Mapping for 3D Concrete Printing
  34. Wan Qian, Yang Wenwei, Wang Li, Ma Guowei (2023-04)
    Global Continuous Path-Planning for 3D Concrete Printing Multi-Branched Structure
  35. Wang Li, Ma Guowei, Liu Tianhao, Buswell Richard et al. (2021-07)
    Inter-Layer Reinforcement of 3D Printed Concrete by the In-Process Deposition of U-Nails
  36. Xiao Jianzhuang, Hou Shaodan, Duan Zhenhua, Zou Shuai (2023-01)
    Rheology of 3D Printable Concrete Prepared by Secondary Mixing of Ready-Mix Concrete
  37. Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
    Large-Scale 3D Printing Concrete Technology:
    Current Status and Future Opportunities
  38. Xiao Jianzhuang, Lv Zhenyuan, Duan Zhenhua, Hou Shaodan (2022-03)
    Study on Preparation and Mechanical Properties of 3D Printed Concrete with Different Aggregate-Combinations
  39. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-01)
    Fresh and Anisotropic-Mechanical Properties of 3D Printable Ultra-High-Ductile Concrete with Crumb-Rubber
  40. Yu Qian, Zhu Binrong, Li Xuesen, Meng Lingqi et al. (2023-04)
    Investigation of the Rheological and Mechanical Properties of 3D Printed Eco-Friendly Concrete with Steel-Slag
  41. Zhang Ruo-Chen, Wang Li, Xue Xuan, Ma Guowei (2023-02)
    Environmental Profile of 3D Concrete Printing Technology in Desert Areas via Life Cycle Assessment

17 Citations

  1. Zhu Xiaowei, Zhang Xudong, Zhang Jicheng, Chen Miao et al. (2025-11)
    Study on Anisotropic Thermal and Mechanical Properties of 3D-Printed Scrap-Aerogel-Incorporated Concrete
  2. Wang Yufei, Sun Junbo, Wang Xiangyu, Huang Bo et al. (2025-09)
    Environmental and Economic Evaluation of a Prefabricated 3D-Printed Structural Units Using Recycled Aggregates from Construction and Demolition Waste:
    A Case Study in China
  3. Su Yanli, Wu Chang, Shang Jiaqi, Zhang Pu (2025-06)
    Mechanical Properties of 3D-Printed High-Ductility Cementitious Composite with Sulphoaluminate Cement and Modified Crumb Rubber
  4. Zhao Hongyu, Wang Xiangyu, Sun Junbo, Wu Fei et al. (2025-03)
    Automated Analysis System for Micro-Defects in 3D Printed Concrete
  5. Sun Junbo, Wang Yufei, Yang Xin, Wang Haihong et al. (2025-01)
    Red Mud Utilization in Fiber-Reinforced 3D Printed Concrete:
    Mechanical Properties and Environmental Impact Analysis
  6. Zhao Hongyu, Sun Junbo, Wang Xiangyu, Wang Yufei et al. (2024-12)
    Real-Time and High-Accuracy Defect Monitoring for 3D Concrete Printing Using Transformer Networks
  7. Zhao Hongyu, Jassmi Hamad, Liu Xianda, Wang Yufei et al. (2024-12)
    Artificial Intelligence-Based Microcracks Research in 3D Printing Concrete
  8. Khan Mirza, Ahmed Aayzaz, Ali Tariq, Qureshi Muhammad et al. (2024-12)
    Comprehensive Review of 3D Printed Concrete, Life Cycle Assessment, AI and ML Models:
    Materials, Engineered Properties and Techniques for Additive Manufacturing
  9. Murali Gunasekaran, Leong Sing (2024-11)
    Waste-Driven Construction:
    A State of the Art Review on the Integration of Waste in 3D Printed Concrete in Recent Researches for Sustainable Development
  10. Sun Junbo, Zhang Yanling, Wu Qi, Wang Yufei et al. (2024-10)
    3D Printed Concrete Incorporating Waste-Rubber:
    Anisotropic Properties and Environmental Impact-Analysis
  11. Samrani Phebe, Cao Yifang, Fimbres-Weihs Gustavo, Sanjaya Eric et al. (2024-09)
    Effect of Fly-Ash and Ground Waste Glass as Cement Replacement in Concrete 3D Printing for Sustainable Construction
  12. Zhao Hongyu, Wang Yufei, Liu Xianda, Wang Xiangyu et al. (2024-08)
    Review on Solid Wastes Incorporated Cementitious Material Using 3D Concrete Printing-Technology
  13. Lyu Xin, Elchalakani Mohamed, Wang Xiangyu, Sun Junbo et al. (2024-07)
    Mechanical Performance and Anisotropic Analysis of Rubberised 3D Printed Concrete Incorporating PP-Fiber
  14. Yang Chao, Xu Xinglong, Lei Zuxiang, Sun Junbo et al. (2024-06)
    Enhancing Mechanical Properties of Three-Dimensional Concrete at Elevated Temperatures Through Recycled Ceramic-Powder Treatment Methods
  15. Birru Bizu, Rehman Atta, Kim Jung-Hoon (2024-06)
    Comparative Analysis of Structural Build-Up in One-Component Stiff and Two-Component Shotcrete-Accelerated Set-on-Demand Mixtures for 3D Concrete Printing
  16. Zaid Osama, Ouni Mohamed (2024-04)
    Advancements in 3D Printing of Cementitious Materials:
    A Review of Mineral Additives, Properties, and Systematic Developments
  17. Nair Sooraj, Tripathi Avinaya, Neithalath Narayanan (2023-11)
    Constitutive Response and Failure Progression in Digitally Fabricated 3D Printed Concrete Under Compression and Their Dependence on Print Layer-Height

BibTeX
@article{zhu_wang_sun_wei.2023.AESotIoWRPotCFaIPo3PSCC,
  author            = "Binrong Zhu and Yufei Wang and Junbo Sun and Yang Wei and Huzi Ye and Hongyu Zhao and Xiangyu Wang",
  title             = "An Experimental Study on the Influence of Waste-Rubber-Particles on the Compressive, Flexural and Impact Properties of 3D Printable Sustainable Cementitious Composites",
  doi               = "10.1016/j.cscm.2023.e02607",
  year              = "2023",
  journal           = "Case Studies in Construction Materials",
  volume            = "19",
  pages             = "e02607",
}
Formatted Citation

B. Zhu, “An Experimental Study on the Influence of Waste-Rubber-Particles on the Compressive, Flexural and Impact Properties of 3D Printable Sustainable Cementitious Composites”, Case Studies in Construction Materials, vol. 19, p. e02607, 2023, doi: 10.1016/j.cscm.2023.e02607.

Zhu, Binrong, Yufei Wang, Junbo Sun, Yang Wei, Huzi Ye, Hongyu Zhao, and Xiangyu Wang. “An Experimental Study on the Influence of Waste-Rubber-Particles on the Compressive, Flexural and Impact Properties of 3D Printable Sustainable Cementitious Composites”. Case Studies in Construction Materials 19 (2023): e02607. https://doi.org/10.1016/j.cscm.2023.e02607.