Skip to content

Feasibility Study on Sustainable-Magnesium-Potassium-Phosphate Cement-Paste for 3D Printing (2019-06)

10.1016/j.conbuildmat.2019.05.053

 Weng Yiwei,  Ruan Shaoqin,  Li Mingyang, Mo Liwu,  Unluer Cise,  Tan Ming,  Qian Shunzhi
Journal Article - Construction and Building Materials, Vol. 221, pp. 595-603

Abstract

3D printing of cementitious materials is an innovative and promising approach in the construction sector, attracting much attention over the past few years. Use of waste cementitious materials in the production of 3D printable components increases the sustainability and cost-effectiveness of this process. This work proposes an environmentally friendly 3D printable cementitious material involving the use of magnesium potassium phosphate cement (MKPC) with various ratios of fly ash replacement ranging from 0 to 60 wt% to increase the working time of the binder. Silica fume was used at up to 10 wt% to adjust rheological and mechanical properties. The performance of the developed MKPC binders with different formulations in the context of 3D printing was assessed via a detailed investigation of the workability, extrudability, buildability, compressive strength, porosity and microstructural analysis. Amongst the mixtures studied, the optimum MKPC formulation involving 60 wt% fly ash and 10 wt% silica fume with a borax-to-magnesia ratio of 1:4 was selected for a small-scale printing demonstration in line with its rheological and mechanical properties. Finally, a 20-layer component with a height of 180 mm was printed in 5 min to demonstrate the feasibility of the adopted mixture in 3D printing.

20 References

  1. Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
    Additive Manufacturing of Concrete in Construction:
    Potentials and Challenges of 3D Concrete Printing
  2. Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
    Large-Scale 3D Printing of Ultra-High-Performance Concrete:
    A New Processing Route for Architects and Builders
  3. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  4. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  5. Lim Jian, Weng Yiwei, Li Mingyang (2018-05)
    Effect of Fiber-Reinforced Polymer on Mechanical Performance of 3D Printed Cementitious Material
  6. Liu Zhixin, Li Mingyang, Weng Yiwei, Wong Teck et al. (2018-12)
    Mixture-Design-Approach to Optimize the Rheological Properties of the Material Used in 3D Cementitious Material-Printing
  7. Lu Bing, Li Mingyang, Lao Wenxin, Weng Yiwei et al. (2018-08)
    Effect of Spray-Based Printing Parameters on Cementitious Material-Distribution
  8. Lu Bing, Qian Ye, Li Mingyang, Weng Yiwei et al. (2019-04)
    Designing Spray-Based 3D Printable Cementitious Materials with Fly-Ash-Cenosphere and Air-Entraining Agent
  9. Lu Bing, Weng Yiwei, Li Mingyang, Qian Ye et al. (2019-02)
    A Systematical Review of 3D Printable Cementitious Materials
  10. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  11. Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
    Additive Manufacturing of Geopolymer for Sustainable Built Environment
  12. Panda Biranchi, Tan Ming (2018-03)
    Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing
  13. Perrot Arnaud, Rangeard Damien, Courteille Eric (2018-04)
    3D Printing of Earth-Based Materials:
    Processing Aspects
  14. Vaitkevičius Vitoldas, Šerelis Evaldas, Kerševičius Vidas (2018-03)
    Effect of Ultra-Sonic Activation on Early Hydration Process in 3D Concrete Printing Technology
  15. Weng Yiwei, Li Mingyang, Liu Zhixin, Lao Wenxin et al. (2018-12)
    Printability and Fire Performance of a Developed 3D Printable Fiber-Reinforced Cementitious Composites under Elevated Temperatures
  16. Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
    Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model
  17. Weng Yiwei, Lu Bing, Li Mingyang, Liu Zhixin et al. (2018-09)
    Empirical Models to Predict Rheological Properties of Fiber-Reinforced Cementitious Composites for 3D Printing
  18. Weng Yiwei, Qian Shunzhi, He Lewei, Li Mingyang et al. (2018-05)
    3D Printable High-Performance Fiber-Reinforced Cementitious Composites For Large-Scale Printing
  19. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  20. Zhang Xu, Li Mingyang, Lim Jian, Weng Yiwei et al. (2018-08)
    Large-Scale 3D Printing by a Team of Mobile Robots

76 Citations

  1. Cai Xianhuan, Chen Fan, Zhao Zhihui, Xiao Peng et al. (2025-12)
    Impact of Early Particle Characteristics on Rheology and Buildability in 3D-Printed Magnesium Silicon Potassium Phosphate Cement Incorporating Fly Ash
  2. Feng Hu, Yuan Xiang, Yu Zhenyu, Guo Aofei et al. (2025-12)
    Printability and Rheological Properties of 3D Printing Ultra-High Ductility Magnesium Phosphate Cement-Based Composites
  3. Si Wen, Khan Mehran, McNally Ciaran (2025-11)
    Rheological Optimization and Mechanical Performance Assessment of High-Volume GGBS-Silica Fume Mortars for 3D Printing
  4. Ataei Sarah, Jafari Amirhosein (2025-10)
    Comparative Environmental Impact Assessment of 3D Concrete Printing and Precast Techniques in Bridge Construction:
    A Case Study Analysis
  5. Fahim Abdullah, Bukhari Syed, Khanzadeh Moradllo Mehdi (2025-09)
    Additive Manufacturing of Carbonatable Ternary Cementitious Systems with Cellulose Nanocrystals
  6. Wang Chaofan, Chen Bing, Wang Yong, Vo Thanh et al. (2025-08)
    Influencing Mechanism of Magnesium-to-Phosphate Ratio on the Rheology and Microstructure Development of 3D-Printed Magnesium Phosphate Cement at Early Hydration
  7. Li Nan, Deng Yongjie, Li Weihong, Li Lingyu et al. (2025-08)
    Performance of Active-Magnesia-Based Magnesium Phosphate Cement and Application of Rapid-Solidification 3D Printing Technology
  8. Ravichandran Darssni, Prem Prabhat, Bhaskara Gollapalli, Maheswaran Srinivasan et al. (2025-07)
    Time-Dependent Properties of 3D Printable Plain and Fibered High Strength Concrete Incorporating Copper Slag as an Alternate Fine Aggregate
  9. Girskas Giedrius, Kligys Modestas (2025-06)
    3D Concrete Printing Review:
    Equipment, Materials, Mix Design, and Properties
  10. Lin Wenyu, Wang Li, Li Zhijian, Bai Gang et al. (2025-06)
    Multi-Scale Fabrication and Challenges in 3D Printing of Special -Shaped Concrete Structures
  11. Das B., Prathap Y., Sandeep Ankit, Vaghamshi Keval et al. (2025-05)
    Reviewing the Materials Selection, Rheology, Durability, and Microstructural Characteristics of 3D Printed Concrete
  12. Tanyildizi Harun, Seloglu Maksut, Bakri Abdullah Mohd, Razak Rafiza et al. (2025-04)
    The Rheological and Mechanical Properties of 3D-Printed Geopolymers:
    A Review
  13. Wang Chaofan, Li Bin, Chen Bing (2025-04)
    Enhancing Printability and Mechanical Performance of 3D Printed Magnesium Phosphate Cement Through Silica Fume Modification:
    Rheological, Microstructural, and Numerical Insights
  14. Zhong Jianjun, Lyu Libo, Deng Yongjie, Ma Haiyan et al. (2025-01)
    An Evaluation-Method for the Printability of Magnesium-Phosphate-Cement Concrete for Integrated Mixing-Stirring-Extrusion Rapid 3D Printing
  15. Nan Bo, Qiao Youxin, Leng Junjie, Bai Yikui (2025-01)
    Advancing Structural Reinforcement in 3D Printed Concrete:
    Current Methods, Challenges, and Innovations
  16. Kopitha Kirushnapillai, Rajeev Pathmanathan, Sanjayan Jay, Elakneswaran Yogarajah (2024-12)
    CO2 Sequestration and Low-Carbon-Strategies in 3D Printed Concrete
  17. Wang Qingwei, Han Song, Liu Qi, Yang Junhao et al. (2024-12)
    Research on the 3D Printing Process and Filament Shape of Cementitious Materials in Low Gravity
  18. Irshidat Mohammad, Cabibihan John-John, Fadli Fodil, Ramahi Siraj et al. (2024-12)
    Waste Materials Utilization in 3D Printable Concrete for Sustainable Construction Applications:
    A Review
  19. Khan Mirza, Ahmed Aayzaz, Ali Tariq, Qureshi Muhammad et al. (2024-12)
    Comprehensive Review of 3D Printed Concrete, Life Cycle Assessment, AI and ML Models:
    Materials, Engineered Properties and Techniques for Additive Manufacturing
  20. Dams Barrie, Chen Binling, Kaya Yusuf, Shepherd Paul et al. (2024-11)
    The Rise of Aerial Additive Manufacturing in Construction:
    A Review of Material Advancements
  21. Zhao Zhihui, Liu Minghao, Kang Aihong, Cai Xianhuan et al. (2024-08)
    Rheology and Buildability of Sustainable 3D Printed Magnesium-Potassium-Phosphate-Cement Composites Incorporating MgO-SiO2-K2HPO4
  22. Perrot Arnaud, Jacquet Yohan, Caron Jean-François, Mesnil Romain et al. (2024-08)
    Snapshot on 3D Printing with Alternative Binders and Materials:
    Earth, Geopolymers, Gypsum and Low-Carbon Concrete
  23. Fernand Muhirwa, Li Yaqi, Qian Qiwei, Chi Yin et al. (2024-08)
    Effects of Coarse Aggregates on 3D Printability and Mechanical Properties of Ultra-High-Performance Fiber-Reinforced Concrete
  24. Peng Yiming, Unluer Cise (2024-07)
    Development of 3D Printed Magnesium-Silicate-Hydrate-Cement Mixes Involving Metakaolin as a Substitute for Silica-Source
  25. Luo Qiling, Yu Ke-Ke, Long Wujian, Zheng Shuyi et al. (2024-07)
    Influence of Different Types of Superabsorbent Polymers on Fresh Mechanical Properties and Inter-Layer Adhesion of 3D Printed Concrete
  26. Shao Lijing, Liu Zhaolong, Liu Qi, Wang Haochuan et al. (2024-07)
    A New Strategy to Enhance 3D Printability of Cement-Based Materials:
    In-Situ Polymerization
  27. Aslani Farhad, Zhang Yifan (2024-06)
    Sustainable 3D Printed Concrete Structures Using High-Quality Secondary Raw Materials
  28. Bong Shin, Du Hongjian (2024-06)
    Sustainable Additive Manufacturing of Concrete with Low-Carbon Materials
  29. Rama Krishna A., Mallik Mainak, Maity Damodar (2024-06)
    Developing an Appropriate Concrete Mix for 3D Concrete Printing
  30. Zhuang Zicheng, Xu Fengming, Ye Junhong, Hu Nan et al. (2024-06)
    A Comprehensive Review of Sustainable Materials and Tool-Path-Optimization in 3D Concrete Printing
  31. Gu Yucun, Zheng Shuyi, Ma Hongyan, Long Wujian et al. (2024-05)
    Effect of Absorption Kinetics of Superabsorbent Polymers on Printability and Inter-Layer Bond of 3D Printing Concrete
  32. Oulkhir Fatima, Akhrif Iatimad, Jai Mostapha (2024-05)
    3D Concrete Printing Success:
    An Exhaustive Diagnosis and Failure-Modes-Analysis
  33. Zaid Osama, Ouni Mohamed (2024-04)
    Advancements in 3D Printing of Cementitious Materials:
    A Review of Mineral Additives, Properties, and Systematic Developments
  34. Colyn Markus, Zijl Gideon, Babafemi Adewumi (2024-02)
    Fresh and Strength Properties of 3D Printable Concrete Mixtures Utilising a High Volume of Sustainable Alternative Binders
  35. Khan Mehran, McNally Ciaran (2023-11)
    A Holistic Review on the Contribution of Civil Engineers for Driving Sustainable Concrete Construction in the Built Environment
  36. Li Mingyang, Zhang Dong, Wong Teck, Tan Ming et al. (2023-09)
    Modeling and Experimental Investigation of Fiber Orientation in Cast and 3D Printed Cementitious Composites
  37. Paritala Spandana, Singaram Kailash, Bathina Indira, Khan Mohd et al. (2023-08)
    Rheology and Pumpability of Mix Suitable for Extrusion-Based Concrete 3D Printing:
    A Review
  38. Wang Chaofan, Chen Bing, Vo Thanh, Rezania Mohammad (2023-07)
    Mechanical Anisotropy, Rheology and Carbon Footprint of 3D Printable Concrete:
    A Review
  39. Tu Haidong, Wei Zhenyun, Bahrami Alireza, Kahla Nabil et al. (2023-06)
    Recent Advancements and Future Trends in 3D Printing Concrete Using Waste-Materials
  40. Singh Narinder, Colangelo Francesco, Farina Ilenia (2023-06)
    Sustainable Non-Conventional Concrete 3D Printing:
    A Review
  41. Haar Bjorn, Kruger Jacques, Zijl Gideon (2023-05)
    Off-Site Construction with 3D Concrete Printing
  42. Fan Dingqiang, Zhu Jinyun, Fan Mengxin, Lu Jianxian et al. (2023-04)
    Intelligent Design and Manufacturing of Ultra-High-Performance Concrete:
    A Review
  43. Razzaghian Ghadikolaee Mehrdad, Cerro-Prada Elena, Pan Zhu, Korayem Asghar (2023-04)
    Nanomaterials as Promising Additives for High-Performance 3D Printed Concrete:
    A Critical Review
  44. Cruz Gil, Dizon John, Farzadnia Nima, Zhou Hongyu et al. (2023-04)
    Performance, Applications, and Sustainability of 3D Printed Cement and Other Geomaterials
  45. Sambucci Matteo, Biblioteca Ilario, Valente Marco (2023-01)
    Life Cycle Assessment (LCA) of 3D Concrete Printing and Casting Processes for Cementitious Materials Incorporating Ground Waste Tire Rubber
  46. Khalili Tari Mohammadreza, Reza Faraji Amir, Aslani Alireza, Zahedi Rahim (2023-01)
    Energy Simulation and Life Cycle Assessment of a 3D Printable Building
  47. Peng Yiming, Unluer Cise (2022-12)
    Development of Alternative Cementitious Binders for 3D Printing Applications:
    A Critical Review of Progress, Advantages and Challenges
  48. Qaidi Shaker, Yahia Ammar, Tayeh B., Unis H. et al. (2022-10)
    3D Printed Geopolymer Composites:
    A Review
  49. Khosravani Mohammad, Haghighi Azadeh (2022-08)
    Large-Scale Automated Additive Construction:
    Overview, Robotic Solutions, Sustainability, and Future Prospect
  50. Matos Paulo, Zat Tuani, Corazza Kiara, Fensterseifer Emilia et al. (2022-05)
    Effect of TiO2 Nano-Particles on the Fresh Performance of 3D Printed Cementitious Materials
  51. Saruhan Vedat, Keskinateş Muhammer, Felekoğlu Burak (2022-04)
    A Comprehensive Review on Fresh State Rheological Properties of Extrusion-Mortars Designed for 3D Printing Applications
  52. Nodehi Mehrab, Ozbakkaloglu Togay, Gholampour Aliakbar (2022-04)
    Effect of Supplementary Cementitious Materials on Properties of 3D Printed Conventional and Alkali-Activated Concrete:
    A Review
  53. Chen Mingxu, Li Haisheng, Yang Lei, Wang Shoude et al. (2022-03)
    Rheology and Shape-Stability-Control of 3D Printed Calcium-Sulphoaluminate-Cement Composites Containing Paper-Milling-Sludge
  54. Mohan Manu, Rahul Attupurathu, Dam Benjamin, Zeidan Talina et al. (2022-02)
    Performance Criteria, Environmental Impact and Cost-Assessment for 3D Printable Concrete Mixtures
  55. Liu Junli, Nguyen Vuong, Panda Biranchi, Fox Kate et al. (2022-02)
    Additive Manufacturing of Sustainable Construction Materials and Form-Finding Structures:
    A Review on Recent Progresses
  56. Dey Dhrutiman, Srinivas Dodda, Panda Biranchi, Suraneni Prannoy et al. (2022-02)
    Use of Industrial Waste-Materials for 3D Printing of Sustainable Concrete:
    A Review
  57. Amran Mugahed, Abdelgader Hakim, Onaizi Ali, Fediuk Roman et al. (2021-12)
    3D Printable Alkali-Activated Concretes for Building Applications:
    A Critical Review
  58. Chen Yu, He Shan, Gan Yidong, Çopuroğlu Oğuzhan et al. (2021-11)
    A Review of Printing-Strategies, Sustainable Cementitious Materials and Characterization Methods in the Context of Extrusion-Based 3D Concrete Printing
  59. Zhao Zhihui, Chen Mingxu, Zhong Xu, Huang Yongbo et al. (2021-07)
    Effects of Bentonite, Diatomite and Metakaolin on the Rheological Behavior of 3D Printed Magnesium-Potassium-Phosphate-Cement Composites
  60. Rehman Atta, Kim Jung-Hoon (2021-07)
    3D Concrete Printing:
    A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics
  61. Bhattacherjee Shantanu, Basavaraj Anusha, Rahul Attupurathu, Santhanam Manu et al. (2021-06)
    Sustainable Materials for 3D Concrete Printing
  62. Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
    Mix-Design Concepts for 3D Printable Concrete:
    A Review
  63. Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2021-06)
    Technologies for Improving Buildability in 3D Concrete Printing
  64. Chang Ze, Xu Yading, Chen Yu, Gan Yidong et al. (2021-05)
    A Discrete Lattice-Model for Assessment of Buildability Performance of 3D Printed Concrete
  65. Ning Xin, Liu Tong, Wu Chunlin, Wang Chao (2021-04)
    3D Printing in Construction:
    Current Status, Implementation Hindrances, and Development Agenda
  66. Zhu Binrong, Pan Jinlong, Zhou Zhenxin, Cai Jingming (2021-04)
    Mechanical Properties of Engineered Cementitious Composites Beams Fabricated by Extrusion-Based 3D
  67. Zhao Zhihui, Chen Mingxu, Xu Jiabin, Li Laibo et al. (2021-03)
    Mix-Design and Rheological Properties of Magnesium-Potassium-Phosphate Cement Composites Based on the 3D Printing-Extrusion-System
  68. Teixeira João, Schaefer Cecília, Rangel Bárbara, Alves Jorge et al. (2021-03)
    Development of 3D Printing Sustainable Mortars Based on a Bibliometric Analysis
  69. Cui Peng, Wu Chun-ran, Chen Jie, Luo Fuming et al. (2021-02)
    Preparation of Magnesium-Oxysulfate Cement as a 3D Printing Material
  70. Weng Yiwei, Mohamed Nisar, Lee Brian, Gan Nicole et al. (2021-02)
    Extracting BIM Information for Lattice Tool-Path-Planning in Digital Concrete Printing with Developed Dynamo Script:
    A Case Study
  71. Singh P., Sreerag K. (2020-12)
    Additive Manufacturing Through Digital Concrete by Extrusion- and Non-Extrusion-Method
  72. Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
    Extrusion-Based Concrete 3D Printing from a Material Perspective:
    A State of the Art Review
  73. Khan Mohammad, Sanchez Florence, Zhou Hongyu (2020-04)
    3D Printing of Concrete:
    Beyond Horizons
  74. Weng Yiwei, Li Mingyang, Ruan Shaoqin, Wong Teck et al. (2020-03)
    Comparative Economic, Environmental and Productivity-Assessment of a Concrete Bathroom Unit Fabricated Through 3D Printing and a Pre-Cast Approach
  75. Khalil Abdullah, Wang Xiangyu, Celik Kemal (2020-02)
    3D Printable Magnesium Oxide Concrete:
    Towards Sustainable Modern Architecture
  76. Panda Biranchi, Unluer Cise, Tan Ming (2019-08)
    Extrusion and Rheology Characterization of Geopolymer Nanocomposites Used in 3D Printing

BibTeX
@article{weng_ruan_li_mo.2019.FSoSMPPCPf3P,
  author            = "Yiwei Weng and Shaoqin Ruan and Mingyang Li and Liwu Mo and Cise Unluer and Ming Jen Tan and Shunzhi Qian",
  title             = "Feasibility Study on Sustainable-Magnesium-Potassium-Phosphate Cement-Paste for 3D Printing",
  doi               = "10.1016/j.conbuildmat.2019.05.053",
  year              = "2019",
  journal           = "Construction and Building Materials",
  volume            = "221",
  pages             = "595--603",
}
Formatted Citation

Y. Weng, “Feasibility Study on Sustainable-Magnesium-Potassium-Phosphate Cement-Paste for 3D Printing”, Construction and Building Materials, vol. 221, pp. 595–603, 2019, doi: 10.1016/j.conbuildmat.2019.05.053.

Weng, Yiwei, Shaoqin Ruan, Mingyang Li, Liwu Mo, Cise Unluer, Ming Jen Tan, and Shunzhi Qian. “Feasibility Study on Sustainable-Magnesium-Potassium-Phosphate Cement-Paste for 3D Printing”. Construction and Building Materials 221 (2019): 595–603. https://doi.org/10.1016/j.conbuildmat.2019.05.053.