Influences of Particle-Size on the Performance of 3D Printed Coarse Aggregate Concrete (2025-01)¶
10.1016/j.conbuildmat.2025.140059
, Shen Wenbin, , , Lin Xiqiang
Journal Article - Construction and Building Materials, Vol. 463, No. 140059
Abstract
Compared with traditional construction technology for building structures, three-dimensional (3D) printed concrete (3DPC) technology offers significant advantages. However, current 3DPC use in engineering applications predominantly relies on mortar, which suffers from significant shrinkage and cracking. To overcome the shortcomings, this study incorporated coarse aggregates into 3DPC and clarified the influence of various sized aggregates on the fresh and hardened performance of 3D printed coarse aggregate concrete (3DPCAC). Experimental research on 3DPCAC was conducted, and the effects of different particle sizes of coarse aggregates on workability were determined. It was found that as size increases, the extrudability decreases, stability improves, and slump reduces. These effects were explained through rheological analysis. As particle size increases, static yield stress rises, while dynamic yield stress increases slightly. Mechanical tests were also conducted to characterise the effects of particle size and loading directions on the performance of 3DPC. The results show that as aggregate particle size increases, the mechanical properties of 3DPC improve and all groups exhibit significant anisotropy. Additionally, microscopic tests revealed that the pores of 3DPC exhibited directionality, explaining the anisotropy through fracture mechanics analysis. Overall, large coarse aggregates significantly enhance the compressive strength and elastic modulus of 3DPCAC. However, they may reduce extrudability and increase anisotropy.
¶
47 References
- Agustí-Juan Isolda, Müller Florian, Hack Norman, Wangler Timothy et al. (2017-04)
Potential Benefits of Digital Fabrication for Complex Structures:
Environmental Assessment of a Robotically Fabricated Concrete Wall - Ahmed Ghafur, Askandar Nasih, Jumaa Ghazi (2022-07)
A Review of Large-Scale 3DCP:
Material-Characteristics, Mix-Design, Printing-Process, and Reinforcement-Strategies - Alghamdi Hussam, Nair Sooraj, Neithalath Narayanan (2019-02)
Insights into Material-Design, Extrusion Rheology, and Properties of 3D Printable Alkali-Activated Fly-Ash-Based Binders - Alghamdi Hussam, Neithalath Narayanan (2019-07)
Synthesis and Characterization of 3D Printable Geopolymeric Foams for Thermally Efficient Building Envelope Materials - Bai Gang, Wang Li, Ma Guowei, Sanjayan Jay et al. (2021-03)
3D Printing Eco-Friendly Concrete Containing Under-Utilised and Waste Solids as Aggregates - Barbosa Marcella, Anjos Marcos, Cabral Kleber, Souza Dias Leonardo (2022-05)
Development of Composites for 3D Printing with Reduced Cement Consumption - Chen Zhengyuan, Yang Shutong, Liu Qi, Xu Mingqi et al. (2024-03)
Closed-Form Fracture-Model for Evaluating Crack-Resistance of 3D Printed Fiber-Reinforced Alkali-Activated Slag/Fly-Ash Recycled-Sand Concrete - Delgado Camacho Daniel, Clayton Patricia, Brien William, Seepersad Carolyn et al. (2018-02)
Applications of Additive Manufacturing in the Construction Industry:
A Forward-Looking Review - Deng Zhicong, Jia Zijian, Zhang Chao, Wang Zhibin et al. (2022-10)
3D Printing Lightweight Aggregate Concrete Prepared with Shell-Packing-Aggregate Method:
Printability, Mechanical Properties and Pore-Structure - Ding Tao, Xiao Jianzhuang, Zou Shuai, Wang Yu (2020-06)
Hardened Properties of Layered 3D Printed Concrete with Recycled Sand - Gebhard Lukas, Mata-Falcón Jaime, Anton Ana-Maria, Dillenburger Benjamin et al. (2021-04)
Structural Behavior of 3D Printed Concrete Beams with Various Reinforcement-Strategies - Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
A Review of 3D Printed Concrete:
Performance-Requirements, Testing Measurements and Mix-Design - Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
Cementitious Materials for Construction-Scale 3D Printing:
Laboratory Testing of Fresh Printing Mixture - Khan Mohd (2020-04)
Mix Suitable for Concrete 3D Printing:
A Review - Kloft Harald, Krauss Hans-Werner, Hack Norman, Herrmann Eric et al. (2020-05)
Influence of Process Parameters on the Inter-Layer Bond Strength of Concrete Elements Additive Manufactured by Shotcrete 3D Printing - Kruger Jacques, Plessis Anton, Zijl Gideon (2020-12)
An Investigation into the Porosity of Extrusion-Based 3D Printed Concrete - Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
Developments in Construction-Scale Additive Manufacturing Processes - Liu Chao, Chen Yuning, Xiong Yuanliang, Jia Lutao et al. (2022-06)
Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Buildability of 3D Printing Foam-Concrete:
From Water State and Flocculation Point of View - Liu Huawei, Liu Chao, Bai Guoliang, Wu Yiwen et al. (2022-04)
Influence of Pore-Defects on the Hardened Properties of 3D Printed Concrete with Coarse Aggregate - Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-09)
3D Printing Concrete with Recycled Coarse Aggregates:
The Influence of Pore-Structure on Inter-Layer Adhesion - Liu Chenkang, Yue Songlin, Zhou Cong, Sun Honglei et al. (2021-08)
Anisotropic Mechanical Properties of Extrusion-Based 3D Printed Layered Concrete - Ma Guowei, Li Zhijian, Wang Li (2017-12)
Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing - Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing - Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
Extrusion-Based Additive Manufacturing with Cement-Based Materials:
Production Steps, Processes, and Their Underlying Physics - Mechtcherine Viktor, Nerella Venkatesh, Will Frank, Näther Mathias et al. (2019-08)
Large-Scale Digital Concrete Construction:
CONPrint3D Concept for On-Site, Monolithic 3D Printing - Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2020-08)
Plastic Shrinkage Cracking in 3D Printed Concrete - Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
Extrusion-Based Concrete 3D Printing from a Material Perspective:
A State of the Art Review - Ngo Tuan, Kashani Alireza, Imbalzano Gabriele, Nguyen Quynh et al. (2018-02)
Additive Manufacturing (3D Printing):
A Review of Materials, Methods, Applications and Challenges - Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction - Perkins Isaac, Skitmore Martin (2015-03)
Three-Dimensional Printing in the Construction Industry:
A Review - Rahul Attupurathu, Mohan Manu, Schutter Geert, Tittelboom Kim (2021-10)
3D Printable Concrete with Natural and Recycled Coarse Aggregates:
Rheological, Mechanical and Shrinkage Behavior - Ramesh Akilesh, Rajeev Pathmanathan, Sanjayan Jay (2024-02)
Bond-Slip Behavior of Textile-Reinforcement in 3D Printed Concrete - Sanjayan Jay, Jayathilakage Roshan, Rajeev Pathmanathan (2020-11)
Vibration-Induced Active Rheology-Control for 3D Concrete Printing - Sasikumar Athira, Balasubramanian Dhayalini, Senthil Kumaran M., Govindaraj Vishnuvarthanan (2023-05)
Effect of Coarse Aggregate Content on the Rheological and Buildability Properties of 3D Printable Concrete - Seo Eun-A, Kim Won-Woo, Kim Sung-Wook, Kwon Hongkyu et al. (2023-03)
Mechanical Properties of 3D Printed Concrete with Coarse Aggregates and Polypropylene-Fiber in the Air and Underwater Environment - Soto Borja, Agustí-Juan Isolda, Hunhevicz Jens, Joss Samuel et al. (2018-05)
Productivity of Digital Fabrication in Construction:
Cost and Time-Analysis of a Robotically Built Wall - Tay Yi, Qian Ye, Tan Ming (2019-05)
Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test - Wang Xianggang, Jia Lutao, Jia Zijian, Zhang Chao et al. (2022-06)
Optimization of 3D Printing Concrete with Coarse Aggregate via Proper Mix-Design and Printing-Process - Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
Digital Concrete:
A Review - Wang Li, Tian Zehao, Ma Guowei, Zhang Mo (2020-02)
Inter-Layer Bonding Improvement of 3D Printed Concrete with Polymer-Modified Mortar:
Experiments and Molecular Dynamics Studies - Warsi Syed, Srinivas Dodda, Panda Biranchi, Biswas Pankaj (2023-12)
Investigating the Impact of Coarse Aggregate Dosage on the Mechanical Performance of 3D Printable Concrete - Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model - Wu Yiwen, Liu Chao, Liu Huawei, Zhang Zhenzi et al. (2021-07)
Study on the Rheology and Buildability of 3D Printed Concrete with Recycled Coarse Aggregates - Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete - Yue Hongfei, Hua Sudong, Qian Hao, Yao Xiao et al. (2021-12)
Investigation on Applicability of Spherical Electric Arc-Furnace-Slag as Fine Aggregate in Superplasticizer-Free 3D Printed Concrete - Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
Fresh Properties of a Novel 3D Printing Concrete Ink - Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete
5 Citations
- Liu Chao, Chen Xianqin, Luo Zhiyu, Liu Huawei et al. (2026-01)
Effects of Pore Defects on Interfacial Bonding Between Rebar and 3D Printed Coarse Aggregate Concrete Under Multiple Loading Conditions - Zhang Chao, Zhang Junyi, Su Yilin, Zhang Yuying et al. (2026-01)
Low-Carbon 3D-Printed Concrete by Using Biochar as a Carbon Sequestrator - Liu Huawei, Tao Yaxin, Zhu Chao, Liu Chao et al. (2025-11)
3D Printed Concrete with Recycled Coarse Aggregate:
Freeze-Thaw Resistance Assessment and Damage Mechanisms - Geng Shao-bo, Zhang Chen, Zhang Hui, Hai Lu et al. (2025-08)
Upcycling Coal Gangue Coarse Aggregates into 3D Printed Concrete:
Multi-Scale Mechanisms of Fracture Behaviour - Song Xinlei, Xu Quanbiao, Wang Hailong, Sun Xiaoyan et al. (2025-05)
Flowability-Dependent Anisotropic Mechanical Properties of 3D Printing Concrete:
Experimental and Theoretical Study
BibTeX
@article{wang_shen_sun_song.2025.IoPSotPo3PCAC,
author = "Hailong Wang and Wenbin Shen and Xiaoyan Sun and Xinlei Song and Xiqiang Lin",
title = "Influences of Particle-Size on the Performance of 3D Printed Coarse Aggregate Concrete: Experiment, Microstructure, and Mechanism Analysis",
doi = "10.1016/j.conbuildmat.2025.140059",
year = "2025",
journal = "Construction and Building Materials",
volume = "463",
pages = "140059",
}
Formatted Citation
H. Wang, W. Shen, X. Sun, X. Song and X. Lin, “Influences of Particle-Size on the Performance of 3D Printed Coarse Aggregate Concrete: Experiment, Microstructure, and Mechanism Analysis”, Construction and Building Materials, vol. 463, p. 140059, 2025, doi: 10.1016/j.conbuildmat.2025.140059.
Wang, Hailong, Wenbin Shen, Xiaoyan Sun, Xinlei Song, and Xiqiang Lin. “Influences of Particle-Size on the Performance of 3D Printed Coarse Aggregate Concrete: Experiment, Microstructure, and Mechanism Analysis”. Construction and Building Materials 463 (2025): 140059. https://doi.org/10.1016/j.conbuildmat.2025.140059.