Skip to content

Effect of Curing Methods During a Long Time-Gap Between Two Printing Sessions on the Inter-Layer Bonding of 3D Printed Cementitious Materials (2022-04)

10.1016/j.conbuildmat.2022.127394

 Chen Yu,  Chang Ze,  He Shan,  Çopuroğlu Oğuzhan,  Šavija Branko,  Schlangen Erik
Journal Article - Construction and Building Materials, Vol. 332

Abstract

A good bond between the layers of 3D printed cementitious materials is a prerequisite for having high structural rigidity for the printed elements. However, the influence of printing process on an interlayer bond is still not well understood. This study investigates the influence of curing methods (i.e., air curing, plastic film covering, wet towel covering and water mist-30 min/-60 min) on the interlayer bonding characteristics of 3D printed cementitious materials for a long time interval between two printing sessions. Results showed that the interlayer bonding could be improved by covering the substrate with a plastic film or a wet towel. However, applying water mist every 60 min/30 min on the deposited layer was detrimental to the interlayer bonding. Furthermore, the interlayer bond strength of studied specimens appeared to be dominated by the mechanical strength of the cementitious matrix at the interface rather than its air void structure. Therefore, covering unfinished printed elements with plastic film or wet towels can be a practical solution to maintain a sufficiently humid environment during long waiting periods, which is vital for its interlayer adhesion.

42 References

  1. Bai Gang, Wang Li, Ma Guowei, Sanjayan Jay et al. (2021-03)
    3D Printing Eco-Friendly Concrete Containing Under-Utilised and Waste Solids as Aggregates
  2. Bhattacherjee Shantanu, Basavaraj Anusha, Rahul Attupurathu, Santhanam Manu et al. (2021-06)
    Sustainable Materials for 3D Concrete Printing
  3. Boscaro Federica, Quadranti Elia, Wangler Timothy, Mantellato Sara et al. (2022-02)
    Eco-Friendly, Set-on-Demand Digital Concrete
  4. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  5. Chang Ze, Xu Yading, Chen Yu, Gan Yidong et al. (2021-05)
    A Discrete Lattice-Model for Assessment of Buildability Performance of 3D Printed Concrete
  6. Chen Yu, Çopuroğlu Oğuzhan, Rodríguez Claudia, Filho Fernando et al. (2021-02)
    Characterization of Air-Void Systems in 3D Printed Cementitious Materials Using Optical Image Scanning and X-Ray Computed Tomography
  7. Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
    Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture
  8. Chen Yu, He Shan, Gan Yidong, Çopuroğlu Oğuzhan et al. (2021-11)
    A Review of Printing-Strategies, Sustainable Cementitious Materials and Characterization Methods in the Context of Extrusion-Based 3D Concrete Printing
  9. Chen Yu, He Shan, Zhang Yu, Wan Zhi et al. (2021-08)
    3D Printing of Calcined-Clay-Limestone-Based Cementitious Materials
  10. Chen Yu, Jansen Koen, Zhang Hongzhi, Rodríguez Claudia et al. (2020-07)
    Effect of Printing-Parameters on Inter-Layer Bond Strength of 3D Printed Limestone-Calcined-Clay-Based Cementitious Materials:
    An Experimental and Numerical Study
  11. Chen Yu, Rodríguez Claudia, Li Zhenming, Chen Boyu et al. (2020-07)
    Effect of Different Grade Levels of Calcined Clays on Fresh and Hardened Properties of Ternary-Blended Cementitious Materials for 3D Printing
  12. Chen Yu, Veer Frederic, Çopuroğlu Oğuzhan, Schlangen Erik (2018-09)
    Feasibility of Using Low CO2 Concrete Alternatives in Extrusion-Based 3D Concrete Printing
  13. Ding Tao, Xiao Jianzhuang, Zou Shuai, Wang Yu (2020-06)
    Hardened Properties of Layered 3D Printed Concrete with Recycled Sand
  14. Geng Zifan, She Wei, Zuo Wenqiang, Lyu Kai et al. (2020-09)
    Layer-Interface Properties in 3D Printed Concrete:
    Dual Hierarchical Structure and Micromechanical Characterization
  15. Keita Emmanuel, Bessaies-Bey Hela, Zuo Wenqiang, Belin Patrick et al. (2019-06)
    Weak Bond Strength Between Successive Layers in Extrusion-Based Additive Manufacturing:
    Measurement and Physical Origin
  16. Kruger Jacques, Plessis Anton, Zijl Gideon (2020-12)
    An Investigation into the Porosity of Extrusion-Based 3D Printed Concrete
  17. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  18. Lee Hojae, Kim Jang-Ho, Moon Jae-Heum, Kim Won-Woo et al. (2019-08)
    Correlation Between Pore Characteristics and Tensile Bond Strength of Additive Manufactured Mortar Using X-Ray Computed Tomography
  19. Li Victor, Bos Freek, Yu Kequan, McGee Wesley et al. (2020-04)
    On the Emergence of 3D Printable Engineered, Strain-Hardening Cementitious Composites
  20. Liu Junli, Li Shuai, Gunasekara Chamila, Fox Kate et al. (2021-11)
    3D Printed Concrete with Recycled Glass:
    Effect of Glass Gradation on Flexural Strength and Microstructure
  21. Ma Guowei, Salman Nazar, Wang Li, Wang Fang (2020-02)
    A Novel Additive Mortar Leveraging Internal Curing for Enhancing Inter-Layer Bonding of Cementitious Composite for 3D Printing
  22. Marchon Delphine, Kawashima Shiho, Bessaies-Bey Hela, Mantellato Sara et al. (2018-05)
    Hydration- and Rheology-Control of Concrete for Digital Fabrication:
    Potential Admixtures and Cement-Chemistry
  23. Mohan Manu, Rahul Attupurathu, Tittelboom Kim, Schutter Geert (2020-10)
    Rheological and Pumping Behavior of 3D Printable Cementitious Materials with Varying Aggregate Content
  24. Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
    Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing
  25. Panda Biranchi, Mohamed Nisar, Paul Suvash, Bhagath Singh Gangapatnam et al. (2019-07)
    The Effect of Material Fresh Properties and Process Parameters on Buildability and Inter-Layer Adhesion of 3D Printed Concrete
  26. Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
    Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar
  27. Perrot Arnaud, Pierre Alexandre, Nerella Venkatesh, Wolfs Robert et al. (2021-07)
    From Analytical Methods to Numerical Simulations:
    A Process Engineering Toolbox for 3D Concrete Printing
  28. Putten Jolien, Deprez Maxim, Cnudde Veerle, Schutter Geert et al. (2019-09)
    Microstructural Characterization of 3D Printed Cementitious Materials
  29. Rahul Attupurathu, Mohan Manu, Schutter Geert, Tittelboom Kim (2021-10)
    3D Printable Concrete with Natural and Recycled Coarse Aggregates:
    Rheological, Mechanical and Shrinkage Behavior
  30. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  31. Sanjayan Jay, Jayathilakage Roshan, Rajeev Pathmanathan (2020-11)
    Vibration-Induced Active Rheology-Control for 3D Concrete Printing
  32. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  33. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  34. Tay Yi, Ting Guan, Qian Ye, Panda Biranchi et al. (2018-07)
    Time-Gap-Effect on Bond Strength of 3D Printed Concrete
  35. Weng Yiwei, Li Mingyang, Zhang Dong, Tan Ming et al. (2021-02)
    Investigation of Inter-Layer Adhesion of 3D Printable Cementitious Material from the Aspect of Printing-Process
  36. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  37. Xu Yanqun, Yuan Qiang, Li Zemin, Shi Caijun et al. (2021-09)
    Correlation of Inter-Layer Properties and Rheological Behaviors of 3DPC with Various Printing Time Intervals
  38. Yu Shiwei, Xia Ming, Sanjayan Jay, Yang Lin et al. (2021-07)
    Microstructural Characterization of 3D Printed Concrete
  39. Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
    Mix-Design Concepts for 3D Printable Concrete:
    A Review
  40. Zhu Binrong, Nematollahi Behzad, Pan Jinlong, Zhang Yang et al. (2021-04)
    3D Concrete Printing of Permanent Formwork for Concrete Column Construction
  41. Zhu Binrong, Pan Jinlong, Zhou Zhenxin, Cai Jingming (2021-04)
    Mechanical Properties of Engineered Cementitious Composites Beams Fabricated by Extrusion-Based 3D
  42. Zuo Wenqiang, Keita Emmanuel, Bornert Michel, Roussel Nicolas (2020-07)
    Drying of 3D Printed Mortar Filaments at Early-Age Assessed by X-Ray Computed Tomography

35 Citations

  1. Liu Renlong, Cheng Zhangqi (2025-10)
    Interlayer Fracture Properties of 3D-Printed Cement-Based Structures:
    Influencing Factors and Mechanisms
  2. Luo Rui, Sun Bin, Fei Xiangpeng, Du Hongjian (2025-10)
    Interlayer Strength Loss in 3D Printed Concrete Due to Time-Gap-Induced Macroporosity
  3. Válek Josef, Romanová Dorota (2025-09)
    3D Concrete Printing Simulating Device in Comparison to Real Printing and Aggregate Substitutes
  4. Sun Hou-Qi, Zeng Jun-Jie, Xie Shan-Shan, Xia Jun-Run et al. (2025-09)
    Mechanical and Microstructural Characterization of Interlayer Bonding in Multi-Material 3D-Printed Concrete
  5. Yang Rijiao, Xu Chengji, You Xiufei, Li Xinze et al. (2025-09)
    Saddle Stitching-Enabled Interfacial Toughening in 3D Printed Concrete
  6. Chan Li-Jing, Padil Khairul, Chin Chee-Long, Ibrahim Izni et al. (2025-09)
    Strategies to Enhance Interlayer Bonding in 3D Printed Concrete:
    A Review
  7. Yang Rijiao, Xu Chengji, Fang Sen, Li Xinze et al. (2025-07)
    Mechanistic Insights into Microstructural Changes Caused by Stapling in Extrusion-Based 3D Printed Concrete (3DPC)
  8. Tao Yaxin, Yuan Yong, Zhang Yi, Wangler Timothy (2025-06)
    Pore Structure Analysis of Printcrete Under Varying Temperature
  9. Raza Ali, Junjie Zhang, Fan Jiahui, Umar Muhammad et al. (2025-05)
    Comprehensive Study on the Microstructural and Mechanical Performance of 3D-Printed Engineered Cementitious Composites with Yellow River Sand Integration
  10. Kaya Ebru, Ciza Baraka, Yalçınkaya Çağlar, Felekoğlu Burak et al. (2025-05)
    A Comparative Study on the Effectiveness of Fly Ash and Blast Furnace Slag as Partial Cement Substitution in 3D Printable Concrete
  11. Kolawole John, Buswell Richard, Mahmood Sultan, Isa Muhammed et al. (2025-02)
    On the Origins of Anisotropy of Extrusion-Based 3D Printed Concrete:
    The Roles of Filament Skin and Agglomeration
  12. Chourasia Ajay, Pal Biswajit, Kapoor Ashish (2025-02)
    Influence of Printing Direction and Interlayer Printing Time on the Bond Characteristics and Hardened Mechanical Properties of Agro-Industrial Waste-Based 3D Printed Concrete
  13. Habibi Alireza, Buswell Richard, Osmani Mohamed, Aziminezhad Mohamadmahdi (2024-11)
    Sustainability Principles in 3D Concrete Printing:
    Analysing Trends, Classifying Strategies, and Future Directions
  14. Zhang Yi, Tao Yaxin, Godinho Jose, Ren Qiang et al. (2024-11)
    Layer Interface Characteristics and Adhesion of 3D Printed Cement-Based Materials Exposed to Post-Printing Temperature Disturbance
  15. Wagner Juliana, Silveira Marcos, Vanderlei Romel, Das Sreekanta (2024-10)
    Comparative Analysis of Mold-Cast and 3D Printed Cement-Based Components:
    Implications for Standardization in Additive Construction
  16. Tittelboom Kim, Mohan Dhanesh, Šavija Branko, Keita Emmanuel et al. (2024-08)
    On the Micro-and Meso-Structure and Durability of 3D Printed Concrete Elements
  17. He Lewei, Chen Bingzhi, Liu Qimin, Chen Hao et al. (2024-07)
    A Quasi-Exponential Distribution of Interfacial Voids and Its Effect on the Inter-Layer Strength of 3D Printed Concrete
  18. Yan Yufei, Zhang Mo, Ma Guowei, Sanjayan Jay (2024-05)
    Enhancing Inter-Layer Bonding Strength of 3D Printed Ternary Geopolymer Using Calcium-Carbonate-Whiskers Spray
  19. Stout Ivy, Godfrey Grant, Dayley Jenna, Rodriguez Dexter et al. (2024-05)
    Concrete Mixture Properties and Designs for Additive Manufacturing:
    A Review of 3D Concrete Printing
  20. Zuo Zibo, Corte Wouter, Huang Yulin, Chen Xiaoming et al. (2024-05)
    Strategies Towards Large-Scale 3D Printing Without Size-Constraints
  21. Sun Bochao, Dominicus Randy, Dong Enlai, Li Peichen et al. (2024-04)
    Predicting the Strength Development of 3D Printed Concrete Considering the Synergistic Effect of Curing-Temperature and Humidity:
    From Perspective of Modified Maturity-Model
  22. Skibicki Szymon, Szewczyk Piotr, Majewska Julia, Sibera Daniel et al. (2024-03)
    The Effect of Inter-Layer Adhesion on Stress-Distribution in 3D Printed Beam Elements
  23. Gamage Kumari, Fawzia Sabrina, Zahra Tatheer, Teixeira Muge et al. (2024-02)
    Advancement in Sustainable 3D Concrete Printing:
    A Review on Materials, Challenges, and Current Progress in Australia
  24. Xiao Jianzhuang, Bai Meiyan, Wu Yuching, Duan Zhenhua et al. (2024-01)
    Inter-Layer Bonding Strength and Pore Characteristics of 3D Printed Engineered Cementitious Composites
  25. Tang Yuxiang, Xiao Jianzhuang, Ding Tao, Liu Haoran et al. (2024-01)
    Trans-Layer and Inter-Layer Fracture Behavior of Extrusion-Based 3D Printed Concrete Under Three-Point Bending
  26. Chen Yu, Rahmani Hossein, Schlangen Erik, Çopuroğlu Oğuzhan (2023-11)
    An Approach to Develop Set-on-Demand 3D Printable Limestone-Calcined-Clay-Based Cementitious Materials Using Calcium-Nitrate
  27. Chang Ze, Liang Minfei, He Shan, Schlangen Erik et al. (2023-09)
    Lattice-Modelling of Early-Age Creep of 3D Printed Segments with the Consideration of Stress-History
  28. Zhang Yi, Zhu Yanmei, Ren Qiang, He Bei et al. (2023-08)
    Comparison of Printability and Mechanical Properties of Rigid and Flexible Fiber-Reinforced 3D Printed Cement-Based Materials
  29. Zhang Yu, Yang Lin, Qian Rusheng, Liu Guojian et al. (2023-07)
    Inter-Layer Adhesion of 3D Printed Concrete:
    Influence of Layer Stacked Vertically
  30. Qureshi Mohsin, Shiwazi Amira, Kindi Ghassan, Sawafi Bushra et al. (2023-03)
    Development of Additive for Concrete 3D Printer by Using Local Materials
  31. Chang Ze, Liang Minfei, Xu Yading, Wan Zhi et al. (2023-02)
    Early-Age Creep of 3D Printable Mortar:
    Experiments and Analytical Modelling
  32. Bischof Patrick, Mata-Falcón Jaime, Ammann Rebecca, Näsbom Andreas et al. (2022-12)
    Digitally Fabricated Weak Interfaces to Reduce Minimum Reinforcement in Concrete Structures
  33. Melichar Jindřich, Žižková Nikol, Brožovský Jiří, Mészárosová Lenka et al. (2022-11)
    Study of the Interaction of Cement-Based Materials for 3D Printing with Fly-Ash and Superabsorbent Polymers
  34. Raza Muhammad, Zhong Ray (2022-08)
    A Sustainable Roadmap for Additive Manufacturing Using Geopolymers in Construction Industry
  35. Chang Ze, Wan Zhi, Xu Yading, Schlangen Erik et al. (2022-06)
    Convolutional Neural Network for Predicting Crack-Pattern and Stress-Crack-Width Curve of Air-Void Structure in 3D Printed Concrete

BibTeX
@article{chen_chan_he_copu.2022.EoCMDaLTGBTPSotILBo3PCM,
  author            = "Yu Chen and Ze Chang and Shan He and Oğuzhan Çopuroğlu and Branko Šavija and Erik Schlangen",
  title             = "Effect of Curing Methods During a Long Time-Gap Between Two Printing Sessions on the Inter-Layer Bonding of 3D Printed Cementitious Materials",
  doi               = "10.1016/j.conbuildmat.2022.127394",
  year              = "2022",
  journal           = "Construction and Building Materials",
  volume            = "332",
}
Formatted Citation

Y. Chen, Z. Chang, S. He, O. Çopuroğlu, B. Šavija and E. Schlangen, “Effect of Curing Methods During a Long Time-Gap Between Two Printing Sessions on the Inter-Layer Bonding of 3D Printed Cementitious Materials”, Construction and Building Materials, vol. 332, 2022, doi: 10.1016/j.conbuildmat.2022.127394.

Chen, Yu, Ze Chang, Shan He, Oğuzhan Çopuroğlu, Branko Šavija, and Erik Schlangen. “Effect of Curing Methods During a Long Time-Gap Between Two Printing Sessions on the Inter-Layer Bonding of 3D Printed Cementitious Materials”. Construction and Building Materials 332 (2022). https://doi.org/10.1016/j.conbuildmat.2022.127394.