Effect of Silica-Fume Utilization on Structural Build-Up, Mechanical and Dimensional Stability Performance of Fiber-Reinforced 3D Printable Concrete (2024-02)¶
, , Beytekin Hatice
Journal Article - Polymers, Vol. 16, Iss. 4
Abstract
It is known that 3D printable concrete mixtures can be costly because they contain high dosages of binder and that the drying-shrinkage performance may be adversely affected. Mineral additives and fibers are generally used to control these negative aspects. In this study, the use of silica fume, a natural viscosity modifying admixture, was investigated to improve the rheological and thixotropic behavior of 3D printable concrete mixtures reinforced with polypropylene fiber (FR-3DPC). The effect of increasing the silica fume utilization ratio in FR-3DPC on the compressive strength (CS), flexural strength (FS), and drying-shrinkage (DS) performance of the mixtures was also examined. A total of five FR-3DPC mixtures were produced using silica fume at the rate of 3, 6, 9, and 12% of the cement weight, in addition to the control mixture without silica fume. As a result of the tests, the dynamic yield stress value decreased with the addition of 3% silica fume to the control mixture. However, it was found that the dynamic yield stress and apparent viscosity values of the mixtures increased with the addition of 6, 9, and 12% silica fume. With the increase in the use of silica fume, the CS values of the mixtures were generally affected positively, while the FS and DS behavior were affected negatively.
¶
39 References
- Asprone Domenico, Auricchio Ferdinando, Menna Costantino, Mercuri Valentina (2018-03)
3D Printing of Reinforced Concrete Elements:
Technology and Design Approach - Bos Freek, Ahmed Zeeshan, Jutinov Evgeniy, Salet Theo (2017-11)
Experimental Exploration of Metal-Cable as Reinforcement in 3D Printed Concrete - Chen Yuning, Zhang Yamei, Xie Yudong, Zhang Zedi et al. (2022-09)
Unraveling Pore-Structure Alternations in 3D Printed Geopolymer Concrete and Corresponding Impacts on Macro-Properties - Dey Dhrutiman, Panda Biranchi (2022-10)
An Experimental Study of Thermal Performance of 3D Printed Concrete Slabs - Geng Zifan, She Wei, Zuo Wenqiang, Lyu Kai et al. (2020-09)
Layer-Interface Properties in 3D Printed Concrete:
Dual Hierarchical Structure and Micromechanical Characterization - Ghasemi Alireza, Naser Mohannad (2023-07)
Tailoring 3D Printed Concrete Through Explainable Artificial Intelligence - Jeong Hoseong, Han Sun-Jin, Choi Seung-Ho, Lee Yoon et al. (2019-02)
Rheological Property Criteria for Buildable 3D Printing Concrete - Jiang Quan, Liu Qiang, Wu Si, Zheng Hong et al. (2022-06)
Modification Effect of Nano-Silica and Polypropylene-Fiber for Extrusion-Based 3D Printing Concrete:
Printability and Mechanical Anisotropy - Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
Cementitious Materials for Construction-Scale 3D Printing:
Laboratory Testing of Fresh Printing Mixture - Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
An Ab-Inito Approach for Thixotropy Characterisation of Nano-Particle-Infused 3D Printable Concrete - Li Long, Hao Lucen, Li Xiao-Sheng, Xiao Jianzhuang et al. (2023-11)
Development of CO2-Integrated 3D Printing Concrete - Liu Chao, Wang Xianggang, Chen Yuning, Zhang Chao et al. (2021-06)
Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete - Liu Chao, Zhang Yamei, Banthia Nemkumar (2023-05)
Unveiling Pore Formation and Its Influence on Micromechanical Property and Stress-Distribution of 3D Printed Foam-Concrete Modified with Hydroxypropyl-Methylcellulose and Silica-Fume - Ma Lei, Zhang Qing, Lombois-Burger Hélène, Jia Zijian et al. (2022-09)
Pore-Structure, Internal Relative Humidity, and Fiber-Orientation of 3D Printed Concrete with Polypropylene-Fiber and Their Relation with Shrinkage - Marchon Delphine, Kawashima Shiho, Bessaies-Bey Hela, Mantellato Sara et al. (2018-05)
Hydration- and Rheology-Control of Concrete for Digital Fabrication:
Potential Admixtures and Cement-Chemistry - Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2021-01)
Early-Age Hydration, Rheology and Pumping Characteristics of CSA Cement-Based 3D Printable Concrete - Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2018-11)
Improving the 3D Printability of High-Volume Fly-Ash Mixtures via the Use of Nano-Attapulgite-Clay - Panda Biranchi, Tan Ming (2018-11)
Rheological Behavior of High-Volume Fly-Ash Mixtures Containing Micro-Silica for Digital Construction Application - Riaz Raja, Usman Muhammad, Ali Ammar, Majid Usama et al. (2023-06)
Inclusive Characterization of 3D Printed Concrete in Additive Manufacturing:
A Detailed Review - Şahin Hatice, Mardani Ali (2021-12)
Assessment of Materials, Design Parameters and Some Properties of 3D Printing Concrete Mixtures:
A State of the Art Review - Şahin Hatice, Mardani Ali (2023-10)
How Does Rheological Behavior Affect the Inter-Layer Bonding Strength of 3DPC Mixtures? - Şahin Hatice, Mardani Ali (2023-02)
Mechanical Properties, Durability Performance and Inter-Layer Adhesion of 3DPC Mixtures:
A State‐of‐the‐art Review - Salet Theo, Ahmed Zeeshan, Bos Freek, Laagland Hans (2018-05)
Design of a 3D Printed Concrete Bridge by Testing - Saruhan Vedat, Keskinateş Muhammer, Felekoğlu Kamile, Felekoğlu Burak (2022-05)
Effect of Fiber-Reinforcement on Extrudability and Buildability of Mineral-Additive-Modified Portland-Cement Mortars:
A Rheometer-Based Simulation-Analysis - Shahzad Qamar, Li Fangyuan (2023-09)
An Innovative Method for Buildability-Assessment of 3D Printed Concrete at Early-Ages - Soltan Daniel, Li Victor (2018-03)
A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing - Souza Marcelo, Ferreira Igor, Moraes Elisângela, Senff Luciano et al. (2020-09)
3D Printed Concrete for Large-Scale Buildings:
An Overview of Rheology, Printing Parameters, Chemical Admixtures, Reinforcements, and Economic and Environmental Prospects - Srinivas Dodda, Dey Dhrutiman, Panda Biranchi, Sitharam Thallak (2022-12)
Printability, Thermal and Compressive Strength Properties of Cementitious Materials:
A Comparative Study with Silica-Fume and Limestone - Surehali Sahil, Tripathi Avinaya, Nimbalkar Atharwa, Neithalath Narayanan (2023-01)
Anisotropic Chloride Transport in 3D Printed Concrete and Its Dependence on Layer-Height and Interface-Types - Tao Yaxin, Lesage Karel, Tittelboom Kim, Yuan Yong et al. (2023-03)
Twin-Pipe Pumping-Strategy for Stiffening-Control of 3D Printable Concrete:
From Transportation to Fabrication - Tran Mien, Cu Yen, Le Chau (2021-10)
Rheology and Shrinkage of Concrete Using Polypropylene-Fiber for 3D Concrete Printing - Wang Chaofan, Chen Bing, Vo Thanh, Rezania Mohammad (2023-07)
Mechanical Anisotropy, Rheology and Carbon Footprint of 3D Printable Concrete:
A Review - Weng Yiwei, Lu Bing, Li Mingyang, Liu Zhixin et al. (2018-09)
Empirical Models to Predict Rheological Properties of Fiber-Reinforced Cementitious Composites for 3D Printing - Xiao Jianzhuang, Hou Shaodan, Duan Zhenhua, Zou Shuai (2023-01)
Rheology of 3D Printable Concrete Prepared by Secondary Mixing of Ready-Mix Concrete - Yalçınkaya Çağlar (2022-03)
Influence of Hydroxypropyl Methylcellulose Dosage on the Mechanical Properties of 3D Printable Mortars with and without Fiber-Reinforcement - Yan Zitong, Zeng Jun-Jie, Zhuge Yan, Liao Jinjing et al. (2023-12)
Compressive Behavior of FRP-Confined 3D Printed Ultra-High-Performance Concrete Cylinders - Yang Huashan, Che Yujun, Shi Mengyuan (2021-07)
Influences of Calcium-Carbonate-Nano-Particles on the Workability and Strength of 3D Printing Cementitious Materials Containing Limestone-Powder - Yao Hao, Xie Zonglin, Li Zemin, Huang Chuhan et al. (2021-11)
The Relationship Between the Rheological Behavior and Inter-Layer Bonding Properties of 3D Printing Cementitious Materials with the Addition of Attapulgite - Zhang Yi, Jiang Zhengwu, Zhu Yanmei, Zhang Jie et al. (2020-10)
Effects of Redispersible Polymer-Powders on the Structural Build-Up of 3D Printing Cement Paste with and without Hydroxypropyl-Methylcellulose
18 Citations
- Teixeira João, Jesus Manuel, Rangel Bárbara, Alves Jorge et al. (2026-01)
Evaluation of Printing Performance of Cementitious Pastes with Alternative Powders - Tushar Fazlul, Hasan Mehedi, Hasan Kamrul, Mawa Jannatul et al. (2026-01)
Factors Affecting Flowability and Rheological Behavior of 3D Printed Concrete:
A Comprehensive Review - Talukdar A., Belek Fialho Teixeira Müge, Fawzia Sabrina, Zahra Tatheer et al. (2026-01)
Investigation on the Fresh and Mechanical Properties of Low Carbon 3D Printed Concrete Incorporating Sugarcane Bagasse Ash and Microfibers - Basith Mydeen Pitchai Mohamed Abdul (2025-12)
Polymer-Enhanced Composites for 3D Concrete Printing:
A Review of Materials, Processes, and Performance - Abbas Yassir, Alsaif Abdulaziz (2025-11)
Explainable Data-Driven Modeling for Optimized Mix Design of 3D-Printed Concrete:
Interpreting Nonlinear Synergies Among Binder Components and Proportions - Megahed Mai, Abou Zeid Mohamed (2025-11)
Toward Sustainable 3D Concrete Printing:
Assessment of SCM-Superplasticizer Interactions on Rheology and Buildability - Garshasbi Sajad, Mousavi Seyed, Dehestani Mehdi, Nazarpour Hadi (2025-10)
Sustainable Production of 3D Concrete Printing Using Agricultural Waste Fibers - Akgümüş Fatih, Şahin Hatice, Mardani Ali (2025-10)
Investigation of Waste Steel Fiber Usage Rate and Length Change on Some Fresh State Properties of 3D Printable Concrete Mixtures - Varghese Renny, Rangel Bárbara, Maia Lino (2025-10)
Strength, Structure, and Sustainability in 3D-Printed Concrete Using Different Types of Fiber Reinforcements - Delavar Mohammad, Aslani Farhad, Sercombe Tim (2025-10)
Cracking Behaviour in 3D Concrete Printed Fiber-Reinforced Cementitious Composites:
A Review - Tarhan Yeşim, Atalay Berrin (2025-09)
Phosphogypsum and Borogypsum as Additives for Sustainable and High-Performance 3D-Printable Concrete - Girskas Giedrius, Kligys Modestas (2025-06)
3D Concrete Printing Review:
Equipment, Materials, Mix Design, and Properties - Şahin Hatice, Kaya Yahya, Akgümüş Fatih, Mardani Naz et al. (2025-03)
Degradation of Mechanical Properties of 3D Fiber Reinforced Printed Concrete Mixtures Exposed to Elevated Temperatures - Şahin Hatice, Akarsu Özenç Aliye, Saka Dinç Zaide, Mardani Ali et al. (2024-11)
Investigation of Fresh and Hardened Properties of 3D Printable Concrete Containing Ozone-Modified Carbon-Fiber - Jin Peng, Hasany Masoud, Kohestanian Mohammad, Mehrali Mehdi (2024-10)
Micro/Nano Additives in 3D Printing Concrete:
Opportunities, Challenges, and Potential Outlook in Construction Applications - Zhao Hongyu, Wang Yufei, Liu Xianda, Wang Xiangyu et al. (2024-08)
Review on Solid Wastes Incorporated Cementitious Material Using 3D Concrete Printing-Technology - Şahin Hatice, Akgümüş Fatih, Mardani Ali (2024-08)
Mechanical and Rheological Properties of Fiber‐Reinforced 3D Printable Concrete in Terms of Fiber Content and Aspect Ratio - Şahin Hatice, Mardani Ali, Mardani Naz (2024-07)
Performance Requirements and Optimum Mix Proportion of High-Volume Fly-Ash 3D Printable Concrete
BibTeX
@article{sahi_mard_beyt.2024.EoSFUoSBUMaDSPoFR3PC,
author = "Hatice Gizem Şahin and Ali Mardani and Hatice Elif Beytekin",
title = "Effect of Silica-Fume Utilization on Structural Build-Up, Mechanical and Dimensional Stability Performance of Fiber-Reinforced 3D Printable Concrete",
doi = "10.3390/polym16040556",
year = "2024",
journal = "Polymers",
volume = "16",
number = "4",
}
Formatted Citation
H. G. Şahin, A. Mardani and H. E. Beytekin, “Effect of Silica-Fume Utilization on Structural Build-Up, Mechanical and Dimensional Stability Performance of Fiber-Reinforced 3D Printable Concrete”, Polymers, vol. 16, no. 4, 2024, doi: 10.3390/polym16040556.
Şahin, Hatice Gizem, Ali Mardani, and Hatice Elif Beytekin. “Effect of Silica-Fume Utilization on Structural Build-Up, Mechanical and Dimensional Stability Performance of Fiber-Reinforced 3D Printable Concrete”. Polymers 16, no. 4 (2024). https://doi.org/10.3390/polym16040556.