A Critical Review on Synergistic Integration of Nanomaterials in 3D-Printed Concrete (2025-10)¶
, , , ,
Journal Article - Applied Sciences, Vol. 15, Iss. 20, No. 11267
Abstract
The use of nanomaterials (NMs) in 3D printing concrete (3DPC) has shown significant advancements in enhancing both fresh and hardened properties. This review finds that their inclusion in printable concrete has altered the rheological properties of the mix by promoting thixotropy, extrudability, and buildability while simultaneously refining the microstructure to enhance mechanical strength. Studies further highlight that these additives impart functional properties, such as the photocatalytic activity of nano-TiO2, which enables self-cleaning ability and assists pollutant degradation. At the same time, carbon-based materials enhance electrical conductivity, thereby facilitating the development of innovative and multifunctional structures. Such incorporation also mitigates anisotropy by filling voids, creating crack-bridging networks, and reducing pore interconnectivity, thereby improving load distribution and structural cohesion in printed structures. Integrating topology optimisation with 3DPC has the potential to enable efficient material usage. Thus, it enhances both sustainability and cost-effectiveness. However, challenges such as efficient dispersion, agglomeration, energy-intensive production processes, high costs, and ensuring environmental compatibility continue to hinder their widespread adoption in concrete printing. This article emphasises the need for optimised NM dosages, effective dispersion techniques, and standardised testing methods, as well as sustainability considerations, for adapting NMs in concrete printing.
¶
118 References
- Agustí-Juan Isolda, Habert Guillaume (2016-11)
Environmental Design Guidelines for Digital Fabrication - Ahmadi Khatereh, Mousavi Seyed, Dehestani Mehdi (2023-09)
Influence of Nano-Coated Micro-Steel-Fibers on Mechanical and Self-Healing Properties of 3D Printable Concrete Using Graphene-Oxide and Polyvinyl-Alcohol - Ahmed Ghafur (2023-01)
A Review of 3D Concrete Printing:
Materials and Process Characterization, Economic Considerations and Environmental Sustainability - Ali Mohd, Nassrullah Ghaith, Al-Rub Rashid, Khaswaneh Bashar et al. (2024-03)
Influence of Carbon-Nano-Tubes on Printing Quality and Mechanical Properties of 3D Printed Cementitious Materials - Al-Qutaifi Sarah, Nazari Ali, Bagheri Ali (2018-07)
Mechanical Properties of Layered Geopolymer Structures Applicable in Concrete 3D Printing - Ambily Parukutty, Kaliyavaradhan Senthil, Rajendran Neeraja (2023-05)
Top Challenges to Widespread 3D Concrete Printing Adoption:
A Review - Aydin Eylül, Kara Burhan, Bundur Zeynep, Özyurt Nilüfer et al. (2022-08)
A Comparative Evaluation of Sepiolite and Nano-Montmorillonite on the Rheology of Cementitious Materials for 3D Printing - Banihashemi Saeed, Akbarnezhad Ali, Sheikhkhoshkar Moslem, Haouzi Hind et al. (2025-08)
3D Printing in Construction:
Sustainable Technology for Building Industry - Batikha Mustafa, Jotangia Rahul, Baaj Mohamad, Mousleh Ibrahim (2021-12)
3D Concrete Printing for Sustainable and Economical Construction:
A Comparative Study - Bayat Hamid, Kashani Alireza (2023-09)
Analysis of Rheological Properties and Printability of a 3D Printing Mortar Containing Silica-Fume, Hydrated Lime, and Blast-Furnace-Slag - Baytak Tugba, Gdeh Tawfeeq, Jiang Zhangfan, Arce Gabriel et al. (2024-09)
Rheological, Mechanical, and Environmental Performance of Printable Graphene-Enhanced Cementitious Composites with Limestone and Calcined Clay - Bhattacherjee Shantanu, Basavaraj Anusha, Rahul Attupurathu, Santhanam Manu et al. (2021-06)
Sustainable Materials for 3D Concrete Printing - Che Yujun, Tang Shengwen, Yang Huashan, Li Weiwei et al. (2021-08)
Influences of Air-Voids on the Performance of 3D Printing Cementitious Materials - Che Yujun, Yang Huashan (2022-10)
Hydration Products, Pore-Structure, and Compressive Strength of Extrusion-Based 3D Printed Cement-Pastes Containing Nano-Calcium-Carbonate - Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture - Chen Yu, Jansen Koen, Zhang Hongzhi, Rodríguez Claudia et al. (2020-07)
Effect of Printing-Parameters on Inter-Layer Bond Strength of 3D Printed Limestone-Calcined-Clay-Based Cementitious Materials:
An Experimental and Numerical Study - Chen Yidong, Zhang Yunsheng, Pang Bo, Liu Zhiyong et al. (2021-05)
Extrusion-Based 3D Printing Concrete with Coarse Aggregate:
Printability and Direction-Dependent Mechanical Performance - Dulaj Albanela, Salet Theo, Lucas Sandra (2022-09)
Mechanical Properties and Self-Sensing Ability of Graphene-Mortar Compositions with Different Water-Content for 3D Printing Applications - Feng Peng, Meng Xinmiao, Chen Jian-Fei, Ye Lieping (2015-06)
Mechanical Properties of Structures 3D Printed with Cementitious Powders - Flatt Robert, Wangler Timothy (2022-05)
On Sustainability and Digital Fabrication with Concrete - Goracci Guido, Salgado David, Gaitero Juan, Dolado Jorge (2022-11)
Electrical Conductive Properties of 3D Printed Concrete Composite with Carbon Nanofibers - Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
Large-Scale 3D Printing of Ultra-High-Performance Concrete:
A New Processing Route for Architects and Builders - Hack Norman, Dörfler Kathrin, Walzer Alexander, Wangler Timothy et al. (2020-03)
Structural Stay-in-Place Formwork for Robotic In-Situ Fabrication of Non-Standard Concrete Structures:
A Real-Scale Architectural Demonstrator - Hambach Manuel, Volkmer Dirk (2017-02)
Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste - Heever Marchant, Bester Frederick, Kruger Jacques, Zijl Gideon (2019-09)
Effect of Silicon-Carbide-Nano-Particles on 3D Printability of Cement-Based Materials - Heywood Kate, Nicholas Paul (2023-06)
Sustainability and 3D Concrete Printing:
Identifying a Need for a More Holistic Approach to Assessing Environmental Impacts - Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2020-01)
Yield-Stress-Criteria to Assess the Buildability of 3D Concrete Printing - Jiang Quan, Liu Qiang, Wu Si, Zheng Hong et al. (2022-06)
Modification Effect of Nano-Silica and Polypropylene-Fiber for Extrusion-Based 3D Printing Concrete:
Printability and Mechanical Anisotropy - Jin Peng, Hasany Masoud, Kohestanian Mohammad, Mehrali Mehdi (2024-10)
Micro/Nano Additives in 3D Printing Concrete:
Opportunities, Challenges, and Potential Outlook in Construction Applications - Jo Jun, Jo Byung, Cho Woohyun, Kim Jung-Hoon (2020-03)
Development of a 3D Printer for Concrete Structures:
Laboratory Testing of Cementitious Materials - Kaliyavaradhan Senthil, Ambily Parukutty, Prem Prabhat, Ghodke Swapnil (2022-08)
Test-Methods for 3D Printable Concrete - Kanagasuntharam Sasitharan, Ramakrishnan Sayanthan, Sanjayan Jay (2023-10)
Investigating PCM Encapsulated NaOH Additive for Set-on-Demand in 3D Concrete Printing - Kaushik Sandipan, Sonebi Mohammed, Amato Giuseppina, Perrot Arnaud et al. (2022-02)
Influence of Nano-Clay on the Fresh and Rheological Behavior of 3D Printing Mortar - Kaushik Sandipan, Sonebi Mohammed, Amato Giuseppina, Perrot Arnaud et al. (2023-09)
Effect of Nano-Clay on the Printability of Extrusion-Based 3D Printable Mortar - Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
Cementitious Materials for Construction-Scale 3D Printing:
Laboratory Testing of Fresh Printing Mixture - Khan Shayan, Ghazi Syed, Amjad Hassan, Imram Muhammad et al. (2023-12)
Emerging Horizons in 3D Printed Cement-Based Materials with Nano-Material-Integration:
A Review - Kilic Ugur, Ma Ji, Baharlou Ehsan, Ozbulut Osman (2023-03)
Effects of Viscosity-Modifying Admixture and Nano-Clay on Fresh and Rheo-Viscoelastic Properties and Printability Characteristics of Cementitious Composites - Kosson Michael, Brown Lesa, Sanchez Florence (2020-01)
Early-Age Performance of 3D Printed Carbon-Nano-Fiber and Carbon Micro-Fiber Cement Composites - Kruger Jacques, Cho Seung, Bester Frederick, Rooyen Algurnon et al. (2021-11)
Nano-Technology for Improved Three-Dimensional Concrete Printing Constructability - Kruger Jacques, Cho Seung, Zeranka Stephan, Vintila Cristian et al. (2019-12)
3D Concrete Printer Parameter Optimization for High-Rate Digital Construction Avoiding Plastic Collapse - Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
3D Concrete Printing:
A Lower-Bound Analytical Model for Buildability-Performance-Quantification - Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
An Ab-Inito Approach for Thixotropy Characterisation of Nano-Particle-Infused 3D Printable Concrete - Labonnote Nathalie, Rønnquist Anders, Manum Bendik, Rüther Petra (2016-09)
Additive Construction:
State of the Art, Challenges and Opportunities - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Lee Keon-Woo, Lee Hojae, Choi Myoungsung (2022-07)
Correlation Between Thixotropic Behavior and Buildability for 3D Concrete Printing - Li L., Fang Z., Chu S., Kwan Albert (2024-11)
Improving Mechanical Properties of 3D Printed Mortar by Exploiting Synergistic Effects of Fly-Ash-Microsphere and Nano-Silica - Liew A., López D., Mele Tom, Block Philippe (2017-02)
Design, Fabrication and Testing of a Prototype, Thin-Vaulted, Unreinforced Concrete Floor - Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
Developments in Construction-Scale Additive Manufacturing Processes - Liu Qiang, Jiang Quan, Huang Mojia, Xin Jie et al. (2022-10)
The Fresh and Hardened Properties of 3D Printing Cement-Base Materials with Self-Cleaning Nano-TiO2:
An Exploratory Study - Liu Qiang, Jiang Quan, Zhou Zhenhua, Xin Jie et al. (2023-02)
The Printable and Hardened Properties of Nano-Calcium Carbonate with Modified Polypropylene-Fibers for Cement-Based 3D Printing - Liu Zhenbang, Li Mingyang, Moo Guo, Kobayashi Hitoshi et al. (2023-05)
Effect of Nano-Structured Silica-Additives on the Extrusion-Based 3D Concrete Printing Application - Liu Zhixin, Li Mingyang, Weng Yiwei, Wong Teck et al. (2018-12)
Mixture-Design-Approach to Optimize the Rheological Properties of the Material Used in 3D Cementitious Material-Printing - Liu Junli, Tran Jonathan, Ginigaddara Thusitha, Mendis Priyan (2023-06)
Exploration of Using Graphene Oxide for Strength Enhancement of 3D Printed Cementitious Mortar - Liu Yi, Wang Li, Yuan Qiang, Peng Jianwei (2023-09)
Effect of Coarse Aggregate on Printability and Mechanical Properties of 3D Printed Concrete - Long Wujian, Lin Can, Tao Jie-Lin, Ye Taohua et al. (2021-02)
Printability and Particle-Packing of 3D Printable Limestone-Calcined-Clay-Cement Composites - Ma Guowei, Wang Li (2017-08)
A Critical Review of Preparation Design and Workability Measurement of Concrete Material for Large-Scale 3D Printing - Mader Thomas, Schreter-Fleischhacker Magdalena, Shkundalova Olena, Neuner Matthias et al. (2023-09)
Constitutive Modeling of Orthotropic Non-Linear Mechanical Behavior of Hardened 3D Printed Concrete - Manikandan Karthick, Wi Kwangwoo, Zhang Xiao, Wang Kejin et al. (2020-03)
Characterizing Cement Mixtures for Concrete 3D Printing - Marchment Taylor, Sanjayan Jay, Nematollahi Behzad, Xia Ming (2019-02)
Inter-Layer Strength of 3D Printed Concrete - Martens Pascal, Mathot Maarten, Bos Freek, Coenders Jeroen (2017-06)
Optimizing 3D Printed Concrete Structures Using Topology Optimization - Matos Paulo, Zat Tuani, Corazza Kiara, Fensterseifer Emilia et al. (2022-05)
Effect of TiO2 Nano-Particles on the Fresh Performance of 3D Printed Cementitious Materials - Mendoza Reales Oscar, Duda Pedro, Silva Emílio, Paiva Maria et al. (2019-06)
Nanosilica-Particles as Structural Buildup Agents for 3D Printing with Portland Cement-Pastes - Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2020-08)
Plastic Shrinkage Cracking in 3D Printed Concrete - Motalebi Arash, Khondoker Mohammad, Kabir Golam (2023-08)
A Systematic Review of Life Cycle Assessments of 3D Concrete Printing - Mujeeb Syed, Samudrala Manideep, Lanjewar Bhagyashri, Chippagiri Ravijanya et al. (2023-05)
Development of Alkali-Activated 3D Printable Concrete:
A Review - Muthukrishnan Shravan, Kua Harn, Yu Ling, Chung Jacky (2020-05)
Fresh Properties of Cementitious Materials Containing Rice-Husk-Ash for Construction 3D Printing - Natanzi Atteyeh, McNally Ciaran (2023-12)
Experimental Investigation of Low-Carbon 3D Printed Concrete - Nematollahi Behzad, Xia Ming, Sanjayan Jay (2017-07)
Current Progress of 3D Concrete Printing Technologies - Nerella Venkatesh, Näther Mathias, Iqbal Arsalan, Butler Marko et al. (2018-09)
In-Line Quantification of Extrudability of Cementitious Materials for Digital Construction - Ogura Hiroki, Nerella Venkatesh, Mechtcherine Viktor (2018-08)
Developing and Testing of Strain-Hardening Cement-Based Composites (SHCC) in the Context of 3D Printing - Panda Biranchi, Lim Jian, Tan Ming (2019-02)
Mechanical Properties and Deformation Behavior of Early-Age Concrete in the Context of Digital Construction - Panda Biranchi, Mohamed Nisar, Paul Suvash, Bhagath Singh Gangapatnam et al. (2019-07)
The Effect of Material Fresh Properties and Process Parameters on Buildability and Inter-Layer Adhesion of 3D Printed Concrete - Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar - Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2018-11)
Improving the 3D Printability of High-Volume Fly-Ash Mixtures via the Use of Nano-Attapulgite-Clay - Panda Biranchi, Tay Yi, Paul Suvash, Tan Ming (2018-05)
Current Challenges and Future Potential of 3D Concrete Printing - Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing - Paritala Spandana, Singaram Kailash, Bathina Indira, Khan Mohd et al. (2023-08)
Rheology and Pumpability of Mix Suitable for Extrusion-Based Concrete 3D Printing:
A Review - Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
A Review of 3D Concrete Printing Systems and Materials Properties:
Current Status and Future Research Prospects - Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques - Prem Prabhat, Ravichandran Darssni, Kaliyavaradhan Senthil, Ambily Parukutty (2022-04)
Comparative Evaluation of Rheological Models for 3D Printable Concrete - Rahman Mahfuzur, Rawat Sanket, Yang Chunhui, Mahil Ahmed et al. (2024-05)
A Comprehensive Review on Fresh and Rheological Properties of 3D Printable Cementitious Composites - Rahul Attupurathu, Mohan Manu, Schutter Geert, Tittelboom Kim (2021-10)
3D Printable Concrete with Natural and Recycled Coarse Aggregates:
Rheological, Mechanical and Shrinkage Behavior - Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
3D Printable Concrete:
Mixture-Design and Test-Methods - Razzaghian Ghadikolaee Mehrdad, Cerro-Prada Elena, Pan Zhu, Korayem Asghar (2023-04)
Nanomaterials as Promising Additives for High-Performance 3D Printed Concrete:
A Critical Review - Rehman Atta, Kim Jung-Hoon (2021-07)
3D Concrete Printing:
A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics - Roussel Nicolas (2018-05)
Rheological Requirements for Printable Concretes - Salah Husam, Mutalib Azrul, Kaish Amrul, Syamsir Agusril et al. (2023-07)
Development of Ultra-High-Performance Silica-Fume-Based Mortar Incorporating Graphene-Nano-Platelets for 3D Concrete Printing Application - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete - Schuldt Steven, Jagoda Jeneé, Hoisington Andrew, Delorit Justin (2021-03)
A Systematic Review and Analysis of the Viability of 3D Printed Construction in Remote Environments - Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
Vision of 3D Printing with Concrete:
Technical, Economic and Environmental Potentials - Sikora Paweł, Chougan Mehdi, Cuevas Villalobos Karla, Liebscher Marco et al. (2021-02)
The Effects of Nano- and Micro-Sized Additives on 3D Printable Cementitious and Alkali-Activated Composites:
A Review - Soda Prabhath, Dwivedi Ashutosh, Sahana C., Gupta Souradeep (2024-03)
Development of 3D Printable Stabilized Earth-Based Construction Materials Using Excavated Soil:
Evaluation of Fresh and Hardened Properties - Sonebi Mohammed, Dedenis Marie, Abdalqader Ahmed, Perrot Arnaud (2021-11)
Effect of Red Mud, Nano-Clay, and Natural Fiber on Fresh and Rheological Properties of Three-Dimensional Concrete Printing - Souza Marcelo, Ferreira Igor, Moraes Elisângela, Senff Luciano et al. (2020-09)
3D Printed Concrete for Large-Scale Buildings:
An Overview of Rheology, Printing Parameters, Chemical Admixtures, Reinforcements, and Economic and Environmental Prospects - Sun Xiaoyan, Wang Qun, Wang Hailong, Chen Long (2020-03)
Influence of Multi-Walled Nanotubes on the Fresh and Hardened Properties of a 3D Printing PVA Mortar Ink - Sun Guangcheng, Wang Zhiguang, Yu Chengkun, Qian Xiaoqian et al. (2023-05)
Properties and Microstructures of 3D Printable Sulphoaluminate-Cement Concrete Containing Industrial Byproducts and Nano-Clay - Tay Yi, Qian Ye, Tan Ming (2019-05)
Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test - Tinoco Matheus, Gouvêa Lucas, Cássia Magalhães Martins Karenn, Toledo Filho Romildo et al. (2022-12)
The Use of Rice Husk Particles to Adjust the Rheological Properties of 3D Printable Cementitious Composites Through Water Sorption - Tinoco Matheus, Mendonça Érica, Fernandez Letízia, Caldas Lucas et al. (2022-04)
Life Cycle Assessment and Environmental Sustainability of Cementitious Materials for 3D Concrete Printing:
A Systematic Literature Review - Varela Hugo, Barluenga Gonzalo, Perrot Arnaud (2023-07)
Extrusion and Structural Build-Up of 3D Printing Cement-Pastes with Fly-Ash, Nano-Clay and VMAs - Wang Yu, Jiang Yaqing, Pan Tinghong, Yin Kangting (2021-08)
The Synergistic Effect of Ester-Ether Copolymerization Thixo-Tropic Superplasticizer and Nano-Clay on the Buildability of 3D Printable Cementitious Materials - Wang Jun, Liu Zhenhua, Hou Jia, Ge Mengmeng (2024-04)
Research-Progress and Trend-Analysis of Concrete 3D Printing Technology Based on CiteSpace - Wangler Timothy, Lloret-Fritschi Ena, Reiter Lex, Hack Norman et al. (2016-10)
Digital Concrete:
Opportunities and Challenges - Weng Yiwei, Li Mingyang, Zhang Dong, Tan Ming et al. (2021-02)
Investigation of Inter-Layer Adhesion of 3D Printable Cementitious Material from the Aspect of Printing-Process - Xia Ming, Nematollahi Behzad, Sanjayan Jay (2019-02)
Development of Powder-Based 3D Concrete Printing Using Geopolymers - Xu Ping, Chen Tianyu, Fan Kaijun, Zhang Minxia (2023-11)
Effect of Nano-Silica-Sol Dosage on the Properties of 3D Printed Concrete - Yang Huashan, Che Yujun, Shi Mengyuan (2021-07)
Influences of Calcium-Carbonate-Nano-Particles on the Workability and Strength of 3D Printing Cementitious Materials Containing Limestone-Powder - Yang Huashan, Li Weiwei, Che Yujun (2020-08)
3D Printing Cementitious Materials Containing Nano-CaCO3:
Workability, Strength, and Microstructure - Yang Yekai, Wu Chengqing, Liu Zhongxian, Wang Hailiang et al. (2021-10)
Mechanical Anisotropy of Ultra-High-Performance Fiber-Reinforced Concrete for 3D Printing - Yuan Qiang, Zhou Dajun, Li Baiyun, Huang Hai et al. (2017-11)
Effect of Mineral Admixtures on the Structural Build-Up of Cement-Paste - Zahabizadeh Behzad, Segundo Iran, Pereira João, Freitas Elisabete et al. (2021-08)
Development of Photocatalytic 3D Printed Cementitious Mortars:
Influence of the Curing, Spraying Time-Gaps and TiO2 Coating Rates - Zahabizadeh Behzad, Segundo Iran, Pereira João, Freitas Elisabete et al. (2023-03)
Photocatalysis of Functionalised 3D Printed Cementitious Materials - Zhang Chao, Deng Zhicong, Chen Chun, Zhang Yamei et al. (2022-03)
Predicting the Static Yield-Stress of 3D Printable Concrete Based on Flowability of Paste and Thickness of Excess-Paste-Layer - Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
A Review of the Current Progress and Application of 3D Printed Concrete - Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
Fresh Properties of a Novel 3D Printing Concrete Ink - Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete - Zhou Wen, Zhang Yamei, Ma Lei, Li Victor (2022-04)
Influence of Printing Parameters on 3D Printing Engineered Cementitious Composites - Zhu Binrong, Nematollahi Behzad, Pan Jinlong, Zhang Yang et al. (2021-04)
3D Concrete Printing of Permanent Formwork for Concrete Column Construction
BibTeX
@article{jamj_thul_redd_kafl.2025.ACRoSIoNi3PC,
author = "Siva Jamjala and Manivannan Thulasirangan Lakshmidevi and K. S. K. Karthik Reddy and Bidur Kafle and Riyadh al Ameri",
title = "A Critical Review on Synergistic Integration of Nanomaterials in 3D-Printed Concrete: Rheology to Microstructure and Eco-Functionality",
doi = "10.3390/app152011267",
year = "2025",
journal = "Applied Sciences",
volume = "15",
number = "20",
pages = "11267",
}
Formatted Citation
S. Jamjala, M. T. Lakshmidevi, K. S. K. K. Reddy, B. Kafle and R. al Ameri, “A Critical Review on Synergistic Integration of Nanomaterials in 3D-Printed Concrete: Rheology to Microstructure and Eco-Functionality”, Applied Sciences, vol. 15, no. 20, p. 11267, 2025, doi: 10.3390/app152011267.
Jamjala, Siva, Manivannan Thulasirangan Lakshmidevi, K. S. K. Karthik Reddy, Bidur Kafle, and Riyadh al Ameri. “A Critical Review on Synergistic Integration of Nanomaterials in 3D-Printed Concrete: Rheology to Microstructure and Eco-Functionality”. Applied Sciences 15, no. 20 (2025): 11267. https://doi.org/10.3390/app152011267.