Skip to content

Method of Optimization for Ambient Temperature Cured Sustainable Geopolymers for 3D Printing Construction Applications (2019-03)

10.3390/ma12060902

 Bong Shin,  Nematollahi Behzad,  Nazari Ali,  Xia Ming,  Sanjayan Jay
Journal Article - Materials, Vol. 12, Iss. 6

Abstract

Since the initial introduction of geopolymers, these materials have been characterised as environmentally-friendly sustainable substitutes for ordinary Portland cement (OPC). There is a routine increase in the application of geopolymers, especially in advanced technologies. Because of its better rheological characteristics compared to OPC, geopolymers are appropriate materials for extrusion-based 3D printing technologies. This paper focuses on the optimisation of an ambient temperature cured geopolymer for 3D printing construction applications. The effects of mixture parameters, including the type of hydroxide solution (HS), the type of silicate solution (SS) and the mass ratio of SS to HS on the workability, extrudability, shape retention ability and mechanical performance of different geopolymer mixtures were investigated. Accordingly, an optimum mixture was identified for geopolymers cured at ambient temperatures. Mechanical properties of the optimised mixture, including flexural and compressive strengths, were measured in different directions with respect to the printed layers. Further, uniaxial tension tests were also conducted on the optimised mixture to measure its interlayer bond strength. The results showed that among the activators investigated, the sodium-based activator composed of sodium hydroxide and sodium silicate solutions, with a SiO₂/Na₂O ratio of 3.22, was the most effective activator, providing appropriate workability and extrudability, along with reasonable strength and a high shape retention ability. The acquired mechanical properties exhibited anisotropic behaviour in different testing direction. The strength of the interlayer bond was found to be adequate to avoid interfacial shear failure.

21 References

  1. Bong Shin, Nematollahi Behzad, Nazari Ali, Xia Ming et al. (2018-09)
    Fresh and Hardened Properties of 3D Printable Geopolymer Cured in Ambient Temperature
  2. Cesaretti Giovanni, Dini Enrico, Kestelier Xavier, Colla Valentina et al. (2013-08)
    Building Components for an Outpost on the Lunar Soil by Means of a Novel 3D Printing Technology
  3. Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
    Large-Scale 3D Printing of Ultra-High-Performance Concrete:
    A New Processing Route for Architects and Builders
  4. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  5. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  6. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  7. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  8. Marchment Taylor, Xia Ming, Dodd Elise, Sanjayan Jay et al. (2017-07)
    Effect of Delay-Time on the Mechanical Properties of Extrusion-Based 3D Printed Concrete
  9. Nematollahi Behzad, Xia Ming, Bong Shin, Sanjayan Jay (2018-09)
    Hardened Properties of 3D Printable One-Part Geopolymer for Construction Applications
  10. Nematollahi Behzad, Xia Ming, Sanjayan Jay (2017-07)
    Current Progress of 3D Concrete Printing Technologies
  11. Nerella Venkatesh, Mechtcherine Viktor (2019-02)
    Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology (CONPrint3D)
  12. Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
    Additive Manufacturing of Geopolymer for Sustainable Built Environment
  13. Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
    Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar
  14. Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
    Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material
  15. Panda Biranchi, Tan Ming (2018-03)
    Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing
  16. Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
    Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing
  17. Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
    A Review of 3D Concrete Printing Systems and Materials Properties:
    Current Status and Future Research Prospects
  18. Rael Ronald, Fratello Virginia (2011-10)
    Developing Concrete Polymer Building Components for 3D Printing
  19. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  20. Wangler Timothy, Lloret-Fritschi Ena, Reiter Lex, Hack Norman et al. (2016-10)
    Digital Concrete:
    Opportunities and Challenges
  21. Zareiyan Babak, Khoshnevis Behrokh (2017-06)
    Inter-Layer Adhesion and Strength of Structures in Contour Crafting:
    Effects of Aggregate-Size, Extrusion-Rate, and Layer-Thickness

81 Citations

  1. Tushar Fazlul, Hasan Mehedi, Hasan Kamrul, Mawa Jannatul et al. (2026-01)
    Factors Affecting Flowability and Rheological Behavior of 3D Printed Concrete:
    A Comprehensive Review
  2. Hasan Md, Xu Jie, Uddin Md (2025-11)
    A Critical Review of 3D Printed Fiber-Based Geopolymer Concrete:
    Fresh Properties, Mechanical Performance, and Current Limitations
  3. Tang Jiyu, Wang Zhihang, Gao Danying, Yang Lin et al. (2025-11)
    Research Progress on 3D Printed Geopolymer Concrete
  4. Öztürk Ece, Borgianni Yuri, Ince Ceren (2025-10)
    3D Printing in the Construction Sector:
    Identification of Key Topics, Technologies, Applications and Relevant Factors Discussed in the Literature
  5. Yerikania Utami, Du Hongjian, Poh Leong (2025-07)
    A Comprehensive Experimental Investigation of Anisotropy Behavior on Highly Carbon-Minimized 3D Printed Concrete
  6. Chen Yanjuan, Cheikh Khadija, Rahier Hubert (2025-07)
    Methodology for the Design and Optimization of Potassium Silicate-Activated Slag Used as the Binder of 3D Printable Materials
  7. Pour Arash, Farsangi Ehsan, Yang T., Li Shaofan et al. (2025-06)
    3D Printing of Conventional and Geopolymer Concretes:
    Advancements, Challenges, Future Directions, and Cost Analysis
  8. Liu Han, Laflamme Simon, Cardinali Amelia, Lyu Ping et al. (2025-03)
    Enhancing 3D-Printed Cementitious Composites with Recycled Carbon Fibers from Wind Turbine Blades
  9. Jiang Youbau, Liu Yan, Zhang Zupan, Gao Pengxiang et al. (2025-03)
    Tensile Performance of Interlayer Interface of Interlocking 3D Printed Concrete with Single Toothlike Nozzle
  10. Akhrif Iatimad, Oulkhir Fatima, Jai Mostapha, Rihani Nadir et al. (2025-03)
    Earth-Based Materials 3D Printing, Extrudability and Buildability Numerical Investigations
  11. Kul Anil, Kocaer Öznur, Aldemir Alper, Yıldırım Gürkan et al. (2024-12)
    3D Printable One-Part Alkali-Activated Mortar Derived from Brick-Masonry-Wastes
  12. Kozub Barbara, Sitarz Mateusz, Gądek Szymon, Ziejewska Celina et al. (2024-11)
    Upscaling of Copper Slag-Based Geopolymer to 3D Printing Technology
  13. Adamtsevich Liubov, Pustovgar Andrey, Adamtsevich Aleksey (2024-10)
    Assessing the Prospects and Risks of Delivering Sustainable Urban Development Through 3D Concrete Printing Implementation
  14. Cai Jianguo, Wang Jingsong, Zhang Qian, Du Caixia et al. (2024-10)
    State of the Art of Mechanical Properties of 3D Printed Concrete
  15. Zhao Wanting, Zhao Yu, Zhu Lingli, Guan Xuemao (2024-10)
    Preparation of 3D Printed Concrete from Solid Waste:
    Study of the Relationship Between Steel-Slag Characteristics and Early Performance in 3D Printing
  16. Sovetova Meruyert, Calautit John (2024-07)
    Design, Calibration and Performance Evaluation of a Small-Scale 3D Printer for Accelerating Research in Additive Manufacturing in Construction
  17. Zhang Kaijian, Lin Wenqiang, Zhang Qingtian, Wang Dehui et al. (2024-07)
    Evaluation of Anisotropy and Statistical Parameters of Compressive Strength for 3D Printed Concrete
  18. Barve Prasad, Bahrami Alireza, Shah Santosh (2024-07)
    A Comprehensive Review on Effects of Material-Composition, Mix-Design, and Mixing-Regimes on Rheology of 3D Printed Geopolymer Concrete
  19. Bong Shin, Du Hongjian (2024-06)
    Sustainable Additive Manufacturing of Concrete with Low-Carbon Materials
  20. Krishna R., Rehman Asif, Mishra Jyotirmoy, Saha Suman et al. (2024-06)
    Additive Manufacturing of Geopolymer Composites for Sustainable Construction:
    Critical Factors, Advancements, Challenges, and Future Directions
  21. Sando Mona, Stephan Dietmar (2024-06)
    The Development of a Fly-Ash-Based Geopolymer for Extrusion-Based 3D Printing, Along with a Printability Prediction Method
  22. Oulkhir Fatima, Akhrif Iatimad, Jai Mostapha (2024-05)
    3D Concrete Printing Success:
    An Exhaustive Diagnosis and Failure-Modes-Analysis
  23. Moraes Maria, Nagata Ester, Duran Afonso, Rossignolo João (2024-02)
    Alkali-Activated Materials Applied in 3D Printing Construction:
    A Review
  24. Liu Ke, Takasu Koji, Jiang Jinming, Zu Kun et al. (2023-12)
    Mechanical Properties of 3D Printed Concrete Components:
    A Review
  25. Zhou Yi, Althoey Fadi, Alotaibi Badr, Gamil Yaser et al. (2023-10)
    An Overview of Recent Advancements in Fiber-Reinforced 3D Printing Concrete
  26. Genc Gokhan, Demircan Ruya, Beyhan Figen, Kaplan Gökhan (2023-10)
    Assessment of the Sustainability and Producibility of Adobe-Constructions Reinforced with Ca-Based Binders:
    Environmental Life-Cycle-Analysis and 3D Printability
  27. Ingle Vaibhav, Kaliyavaradhan Senthil, Ambily Parukutty, Shekar Deepadharshan (2023-09)
    3D Printable Concrete Without Chemical Admixtures:
    Fresh and Hardened Properties
  28. Kazemian Ali, Giwa Ilerioluwa, Ekenel Mahmut (2023-06)
    Large-Scale Additive Manufacturing for Automated Construction:
    An Overview
  29. Tu Haidong, Wei Zhenyun, Bahrami Alireza, Kahla Nabil et al. (2023-06)
    Recent Advancements and Future Trends in 3D Printing Concrete Using Waste-Materials
  30. Singh Narinder, Colangelo Francesco, Farina Ilenia (2023-06)
    Sustainable Non-Conventional Concrete 3D Printing:
    A Review
  31. Mujeeb Syed, Samudrala Manideep, Lanjewar Bhagyashri, Chippagiri Ravijanya et al. (2023-05)
    Development of Alkali-Activated 3D Printable Concrete:
    A Review
  32. Haar Bjorn, Kruger Jacques, Zijl Gideon (2023-05)
    Off-Site Construction with 3D Concrete Printing
  33. Vespalec Arnošt, Podroužek Jan, Koutný Daniel (2023-04)
    DoE Approach to Setting Input Parameters for Digital 3D Printing of Concrete for Coarse Aggregates up to 8 mm
  34. Paul Suvash, Basit Md, Hasan Noor, Dey Dhrutiman et al. (2023-04)
    3D Printing of Geopolymer Mortar:
    Overview of the Effect of Mix-Design and Printing Parameters on the Strength
  35. Kazemian Ali, Seylabi Elnaz, Ekenel Mahmut (2023-03)
    Concrete 3D Printing:
    Challenges and Opportunities for the Construction Industry
  36. Baigarina Akerke, Shehab Essam, Ali Md. (2023-02)
    Construction 3D Printing:
    A Critical Review and Future Research-Directions
  37. Zhu Lingli, Yao Jie, Zhao Yu, Ruan Wenqiang et al. (2022-12)
    Effects of Composite Cementation System on Rheological and Working Performances of Fresh 3D Printable Engineered Cementitious Composites
  38. Peng Yiming, Unluer Cise (2022-12)
    Development of Alternative Cementitious Binders for 3D Printing Applications:
    A Critical Review of Progress, Advantages and Challenges
  39. Volpe Stelladriana, Sangiorgio Valentino, Fiorito Francesco, Varum Humberto (2022-12)
    Overview of 3D Construction Printing and Future Perspectives:
    A Review of Technology, Companies and Research Progression
  40. Lv Chun, Shen Hongtao, Liu Jie, Wu Dan et al. (2022-11)
    Properties of 3D Printing Fiber-Reinforced Geopolymers Based on Inter-Layer Bonding and Anisotropy
  41. Alonso-Cañon Sara, Blanco-Fernandez Elena, Castro-Fresno Daniel, Yoris-Nobile Adrian et al. (2022-11)
    Reinforcements in 3D Printing Concrete Structures
  42. Kan Deyuan, Liu Guifeng, Cao Shuang, Chen Zhengfa et al. (2022-11)
    Mechanical Properties and Pore-Structure of Multi-Walled Carbon-Nano-Tube-Reinforced Reactive Powder-Concrete for Three-Dimensional Printing Manufactured by Material-Extrusion
  43. Qaidi Shaker, Yahia Ammar, Tayeh B., Unis H. et al. (2022-10)
    3D Printed Geopolymer Composites:
    A Review
  44. Medicis Carolina, Gonzalez Sergio, Alvarado Yezid, Vacca Hermes et al. (2022-09)
    Mechanical Performance of Commercially Available Premix UHPC-Based 3D Printable Concrete
  45. Raza Muhammad, Zhong Ray (2022-08)
    A Sustainable Roadmap for Additive Manufacturing Using Geopolymers in Construction Industry
  46. Kondepudi Kala, Subramaniam Kolluru, Nematollahi Behzad, Bong Shin et al. (2022-05)
    Study of Particle-Packing and Paste-Rheology in Alkali-Activated Mixtures to Meet the Rheology Demands of 3D Concrete Printing
  47. Cao Xiangpeng, Yu Shiheng, Cui Hongzhi, Li Zongjin (2022-04)
    3D Printing Devices and Reinforcing Techniques for Extruded Cement-Based Materials:
    A Review
  48. Zhi Peng, Wu Yuching, Yang Qianfan, Kong Xiangrui et al. (2022-03)
    Effect of Spiral Blade Geometry on 3D Printed Concrete Rheological Properties and Extrudability Using Discrete Event Modeling
  49. Liu Siyu, Lu Bing, Li Hongliang, Pan Zehua et al. (2022-03)
    A Comparative Study on Environmental Performance of 3D Printing and Conventional Casting of Concrete Products with Industrial Wastes
  50. Guamán-Rivera Robert, Martínez-Rocamora Alejandro, García-Alvarado Rodrigo, Muñoz-Sanguinetti Claudia et al. (2022-02)
    Recent Developments and Challenges of 3D Printed Construction:
    A Review of Research Fronts
  51. Liu Junli, Nguyen Vuong, Panda Biranchi, Fox Kate et al. (2022-02)
    Additive Manufacturing of Sustainable Construction Materials and Form-Finding Structures:
    A Review on Recent Progresses
  52. Chen Yuning, Jia Lutao, Liu Chao, Zhang Zedi et al. (2022-01)
    Mechanical Anisotropy Evolution of 3D Printed Alkali-Activated Materials with Different GGBFS-FA Combinations
  53. Amran Mugahed, Abdelgader Hakim, Onaizi Ali, Fediuk Roman et al. (2021-12)
    3D Printable Alkali-Activated Concretes for Building Applications:
    A Critical Review
  54. Wang Hailong, Shao Jianwen, Zhang Jing, Zou Daoqin et al. (2021-11)
    Bond Shear Performances and Constitutive Model of Interfaces Between Vertical and Horizontal Filaments of 3D Printed Concrete
  55. Liu Junli, Li Shuai, Gunasekara Chamila, Fox Kate et al. (2021-11)
    3D Printed Concrete with Recycled Glass:
    Effect of Glass Gradation on Flexural Strength and Microstructure
  56. Chen Yu, He Shan, Gan Yidong, Çopuroğlu Oğuzhan et al. (2021-11)
    A Review of Printing-Strategies, Sustainable Cementitious Materials and Characterization Methods in the Context of Extrusion-Based 3D Concrete Printing
  57. Sonebi Mohammed, Dedenis Marie, Abdalqader Ahmed, Perrot Arnaud (2021-11)
    Effect of Red Mud, Nano-Clay, and Natural Fiber on Fresh and Rheological Properties of Three-Dimensional Concrete Printing
  58. Lyu Fuyan, Zhao Dongliang, Hou Xiaohui, Sun Li et al. (2021-10)
    Overview of the Development of 3D Printing Concrete:
    A Review
  59. Lv Xuesen, Qin Yao, Liang Hang, Cui Xuemin (2021-07)
    Effects of Modifying-Agent on Rheology and Workability of Alkali-Activated Slag-Paste for 3D Extrusion-Forming
  60. Yu Shiwei, Xia Ming, Sanjayan Jay, Yang Lin et al. (2021-07)
    Microstructural Characterization of 3D Printed Concrete
  61. Bhattacherjee Shantanu, Basavaraj Anusha, Rahul Attupurathu, Santhanam Manu et al. (2021-06)
    Sustainable Materials for 3D Concrete Printing
  62. Bong Shin, Xia Ming, Nematollahi Behzad, Shi Caijun (2021-04)
    Ambient Temperature Cured ‘Just-Add-Water’ Geopolymer for 3D Concrete Printing Applications
  63. Cho Seung, Kruger Jacques, Rooyen Algurnon, Zijl Gideon (2021-03)
    Rheology and Application of Buoyant Foam-Concrete for Digital Fabrication
  64. Schuldt Steven, Jagoda Jeneé, Hoisington Andrew, Delorit Justin (2021-03)
    A Systematic Review and Analysis of the Viability of 3D Printed Construction in Remote Environments
  65. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
    Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing
  66. Kristombu Baduge Shanaka, Navaratnam Satheeskumar, Zidan Yousef, McCormack Tom et al. (2021-01)
    Improving Performance of Additive Manufactured Concrete:
    A Review on Material Mix-Design, Processing, Inter-Layer Bonding, and Reinforcing-Methods
  67. Alchaar Aktham, Tamimi Adil (2020-10)
    Mechanical Properties of 3D Printed Concrete in Hot Temperatures
  68. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2020-10)
    Development of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete for Digital Construction
  69. Guo Xiaolu, Yang Junyi, Xiong Guiyan (2020-09)
    Influence of Supplementary Cementitious Materials on Rheological Properties of 3D Printed Fly-Ash-Based Geopolymer
  70. Marchment Taylor, Sanjayan Jay (2020-09)
    Bond Properties of Reinforcing Bar Penetrations in 3D Concrete Printing
  71. Mahadevan Meera, Francis Ann, Thomas Albert (2020-08)
    A Simulation-Based Investigation of Sustainability Aspects of 3D Printed Structures
  72. Yu Shiwei, Du Hongjian, Sanjayan Jay (2020-07)
    Aggregate-Bed 3D Concrete Printing with Cement-Paste Binder
  73. Arunothayan Arun, Nematollahi Behzad, Sanjayan Jay, Ranade Ravi et al. (2020-07)
    Quantitative Evaluation of Orientation of Steel-Fibers in 3D Printed Ultra-High-Performance Concrete
  74. Nematollahi Behzad, Bong Shin, Xia Ming, Sanjayan Jay (2020-07)
    Digital Fabrication of ‘Just-Add-Water’ Geopolymers:
    Effects of Curing Condition and Print-Time Interval
  75. Guamán-Rivera Robert, García-Alvarado Rodrigo, Martínez-Rocamora Alejandro, Cheein Fernando (2020-05)
    A Comprehensive Performance Evaluation of Different Mobile Manipulators Used as Displaceable 3D Printers of Building Elements for the Construction Industry
  76. Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
    Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture
  77. Arunothayan Arun, Nematollahi Behzad, Bong Shin, Ranade Ravi et al. (2019-09)
    Hardened Properties of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete for Digital Construction Applications
  78. Bong Shin, Nematollahi Behzad, Xia Ming, Nazari Ali et al. (2019-09)
    Properties of 3D Printable Ductile Fiber-Reinforced Geopolymer Composite for Digital Construction Applications
  79. Nematollahi Behzad, Xia Ming, Sanjayan Jay (2019-09)
    Enhancing Strength of Powder-Based 3D Printed Geopolymers for Digital Construction Applications
  80. Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
    Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction
  81. Lafhaj Zoubeir, Dakhli Zakaria (2019-04)
    Performance Indicators of Printed Construction Materials:
    A Durability-Based Approach

BibTeX
@article{bong_nema_naza_xia.2019.MoOfATCSGf3PCA,
  author            = "Shin Hau Bong and Behzad Nematollahi and Ali Nazari and Ming Xia and Jay Gnananandan Sanjayan",
  title             = "Method of Optimization for Ambient Temperature Cured Sustainable Geopolymers for 3D Printing Construction Applications",
  doi               = "10.3390/ma12060902",
  year              = "2019",
  journal           = "Materials",
  volume            = "12",
  number            = "6",
}
Formatted Citation

S. H. Bong, B. Nematollahi, A. Nazari, M. Xia and J. G. Sanjayan, “Method of Optimization for Ambient Temperature Cured Sustainable Geopolymers for 3D Printing Construction Applications”, Materials, vol. 12, no. 6, 2019, doi: 10.3390/ma12060902.

Bong, Shin Hau, Behzad Nematollahi, Ali Nazari, Ming Xia, and Jay Gnananandan Sanjayan. “Method of Optimization for Ambient Temperature Cured Sustainable Geopolymers for 3D Printing Construction Applications”. Materials 12, no. 6 (2019). https://doi.org/10.3390/ma12060902.