3D Printing and Implementation of Engineered Cementitious Composites (2024-07)¶
Asghari Y., Mohammadyan-Yasouj S., Petrů M., Ghandvar H., Koloor S.
Journal Article - Case Studies in Construction Materials, No. e03462
Abstract
While 3D printing of concrete (3DCP) has gained increasing interest in the construction industry, steel reinforcement remains a significant obstacle to 3D printing (3DP) construction. To address this concern, Engineered Cementitious Composites (ECC), also recognized as Strain-Hardening Cementitious Composites (SHCC), can provide structural performance and integrity, safety, durability, and strength without steel reinforcement. The article reviews scientific works on 3DCP using ECC and proposes further investigations to lead to better development. As a result, generally, Poly-Ethylene (PE) fibers are used more frequently because of their strength. Mix design parameters have been extensively examined in relation to fresh ECC rheological characteristics. Due to the printing process, fiber orientation may affect ultimate tensile strain. As compared to casted ones with random fiber orientation, fiber orientation aligned with tensile stress resulted in a higher ultimate tensile strain. Additionally, research showed that ECC including up to 2% fiber can be mixed, extruded, and built. Morovere, results highlighted the comparison between printed ECC containing PVA and PE fibers, the influence of mix design parameters on extrudability, and the impact of fiber length and volume fraction on strain-hardening properties. The text also covers the effects of fiber orientation and nozzle distance on tensile performance and ultimate tensile strain, as well as the anisotropic properties of 3DP-ECC. As well as this, there are some areas that require further research, such as durability and response to a variety of loading conditions, such as seismic loading.
¶
83 References
- Anleu Paula, Wangler Timothy, Nerella Venkatesh, Mechtcherine Viktor et al. (2023-03)
Using Micro-XRF to Characterize Chloride-Ingress Through Cold Joints in 3D Printed Concrete - Aslani Farhad, Dale Ryan, Hamidi Fatemeh, Valizadeh Afsaneh (2022-05)
Mechanical and Shrinkage Performance of 3D Printed Rubberised Engineered Cementitious Composites - Asprone Domenico, Menna Costantino, Bos Freek, Salet Theo et al. (2018-06)
Rethinking Reinforcement for Digital Fabrication with Concrete - Bai Meiyan, Wu Yuching, Xiao Jianzhuang, Ding Tao et al. (2023-04)
Workability and Hardened Properties of 3D Printed Engineered Cementitious Composites Incorporating Recycled Sand and PE-Fibers - Bao Yi, Xu Mingfeng, Soltan Daniel, Xia Tian et al. (2018-09)
Three-Dimensional Printing Multifunctional Engineered Cementitious Composites (ECC) for Structural Elements - Bos Freek, Ahmed Zeeshan, Jutinov Evgeniy, Salet Theo (2017-11)
Experimental Exploration of Metal-Cable as Reinforcement in 3D Printed Concrete - Bos Freek, Bosco Emanuela, Salet Theo (2018-11)
Ductility of 3D Printed Concrete Reinforced with Short Straight Steel-Fibers - Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture - Chen Mingxu, Li Laibo, Zheng Yan, Zhao Piqi et al. (2018-09)
Rheological and Mechanical Properties of Admixtures-Modified 3D Printing Sulphoaluminate Cementitious Materials - Chen Mingxu, Liu Bo, Li Laibo, Cao Lidong et al. (2020-01)
Rheological Parameters, Thixotropy and Creep of 3D Printed Calcium-Sulfoaluminate-Cement Composites Modified by Bentonite - Ding Tao, Xiao Jianzhuang, Qin Fei, Duan Zhenhua (2020-03)
Mechanical Behavior of 3D Printed Mortar with Recycled Sand at Early-Ages - Ding Tao, Xiao Jianzhuang, Zou Shuai, Yu Jiangtao (2021-03)
Flexural Properties of 3D Printed Fiber-Reinforced Concrete with Recycled Sand - Ding Tao, Xiao Jianzhuang, Zou Shuai, Zhou Xinji (2020-08)
Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers - Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2019-03)
An Approach to Develop Printable Strain-Hardening Cementitious Composites - Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2020-05)
Mechanical Behavior of Printed Strain-Hardening Cementitious Composites - Ghaffar Seyed, Corker Jorge, Fan Mizi (2018-05)
Additive Manufacturing Technology and Its Implementation in Construction as an Eco-Innovative Solution - Hack Norman, Kloft Harald (2020-07)
Shotcrete 3D Printing Technology for the Fabrication of Slender Fully Reinforced Freeform Concrete Elements with High Surface Quality:
A Real-Scale Demonstrator - Hambach Manuel, Möller Hendrik, Neumann Thomas, Volkmer Dirk (2016-08)
Portland-Cement-Paste with Aligned Carbon-Fibers Exhibiting Exceptionally High Flexural Strength (>100 MPa) - Hambach Manuel, Volkmer Dirk (2017-02)
Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste - Hamidi Fatemeh, Aslani Farhad (2019-05)
Additive Manufacturing of Cementitious Composites:
Materials, Methods, Potentials, and Challenge - Han Yilong, Yang Zhihan, Ding Tao, Xiao Jianzhuang (2020-08)
Environmental and Economic Assessment on 3D Printed Buildings with Recycled Concrete - Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
Cementitious Materials for Construction-Scale 3D Printing:
Laboratory Testing of Fresh Printing Mixture - Ketel Sabrina, Falzone Gabriel, Wang Bu, Washburn Newell et al. (2018-04)
A Printability Index for Linking Slurry Rheology to the Geometrical Attributes of 3D Printed Components - Khalil Noura, Aouad Georges, Cheikh Khadija, Rémond Sébastien (2017-09)
Use of Calcium-Sulfoaluminate-Cements for Setting-Control of 3D Printing Mortars - Kruger Jacques, Cho Seung, Zeranka Stephan, Vintila Cristian et al. (2019-12)
3D Concrete Printer Parameter Optimization for High-Rate Digital Construction Avoiding Plastic Collapse - Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
3D Concrete Printing:
A Lower-Bound Analytical Model for Buildability-Performance-Quantification - Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
An Ab-Inito Approach for Thixotropy Characterisation of Nano-Particle-Infused 3D Printable Concrete - Kruger Jacques, Zeranka Stephan, Zijl Gideon (2020-04)
A Rheology-Based Quasi-Static Shape-Retention-Model for Digitally Fabricated Concrete - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Hardened Properties of High-Performance Printing Concrete - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Li Victor, Bos Freek, Yu Kequan, McGee Wesley et al. (2020-04)
On the Emergence of 3D Printable Engineered, Strain-Hardening Cementitious Composites - Li Zhijian, Wang Li, Ma Guowei (2020-01)
Mechanical Improvement of Continuous Steel-Micro-Cable-Reinforced Geopolymer Composites for 3D Printing Subjected to Different Loading Conditions - Liu Zhixin, Li Mingyang, Weng Yiwei, Wong Teck et al. (2018-12)
Mixture-Design-Approach to Optimize the Rheological Properties of the Material Used in 3D Cementitious Material-Printing - Lu Bing, Weng Yiwei, Li Mingyang, Qian Ye et al. (2019-02)
A Systematical Review of 3D Printable Cementitious Materials - Ma Guowei, Li Zhijian, Wang Li (2017-12)
Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing - Ma Guowei, Li Zhijian, Wang Li, Bai Gang (2018-10)
Micro-Cable-Reinforced Geopolymer Composite for Extrusion-Based 3D Printing - Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing - Malaeb Zeina, Sakka Fatima, Hamzeh Farook (2019-02)
3D Concrete Printing:
Machine Design, Mix Proportioning, and Mix Comparison Between Different Machine Setups - McGee Wesley, Ng Tsz, Yu Kequan, Li Victor (2020-07)
Extrusion Nozzle Shaping for Improved 3DP of Engineered Cementitious Composites (ECC-SHCC) - Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
Extrusion-Based Additive Manufacturing with Cement-Based Materials:
Production Steps, Processes, and Their Underlying Physics - Mechtcherine Viktor, Grafe Jasmin, Nerella Venkatesh, Spaniol Erik et al. (2018-05)
3D Printed Steel-Reinforcement for Digital Concrete Construction:
Manufacture, Mechanical Properties and Bond Behavior - Mechtcherine Viktor, Michel Albert, Liebscher Marco, Schneider Kai et al. (2019-11)
Mineral-Impregnated Carbon-Fiber Composites as Novel Reinforcement for Concrete Construction:
Material and Automation Perspectives - Mechtcherine Viktor, Nerella Venkatesh, Kasten Knut (2013-12)
Testing Pumpability of Concrete Using Sliding-Pipe Rheometer - Nerella Venkatesh, Mechtcherine Viktor (2018-03)
Virtual Sliding-Pipe Rheometer for Estimating Pumpability of Concrete - Nerella Venkatesh, Mechtcherine Viktor (2019-02)
Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology (CONPrint3D) - Ogura Hiroki, Nerella Venkatesh, Mechtcherine Viktor (2018-08)
Developing and Testing of Strain-Hardening Cement-Based Composites (SHCC) in the Context of 3D Printing - Overmeir Anne, Figueiredo Stefan, Šavija Branko, Bos Freek et al. (2022-02)
Design and Analyses of Printable Strain-Hardening Cementitious Composites with Optimized Particle-Size-Distribution - Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
Additive Manufacturing of Geopolymer for Sustainable Built Environment - Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material - Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2020-01)
Investigation of the Properties of Alkali-Activated Slag Mixes Involving the Use of Nano-Clay and Nucleation-Seeds for 3D Printing - Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction - Pegna Joseph (1997-02)
Exploratory Investigation of Solid Freeform Construction - Putten Jolien, Schutter Geert, Tittelboom Kim (2018-09)
The Effect of Print Parameters on the (Micro)structure of 3D Printed Cementitious Materials - Rahul Attupurathu, Santhanam Manu (2020-02)
Evaluating the Printability of Concretes Containing Lightweight Coarse Aggregates - Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
3D Printable Concrete:
Mixture-Design and Test-Methods - Roussel Nicolas (2018-05)
Rheological Requirements for Printable Concretes - Rushing Todd, Chaar Ghassan, Eick Brian, Burroughs Jedadiah et al. (2017-01)
Investigation of Concrete Mixtures for Additive Construction - Schröfl Christof, Nerella Venkatesh, Mechtcherine Viktor (2018-09)
Capillary Water Intake by 3D Printed Concrete Visualised and Quantified by Neutron Radiography - Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
Vision of 3D Printing with Concrete:
Technical, Economic and Environmental Potentials - Secrieru Egor, Cotardo Dario, Mechtcherine Viktor, Lohaus Ludger et al. (2018-04)
Changes in Concrete Properties During Pumping and Formation of Lubricating Material Under Pressure - Shakor Pshtiwan, Nejadi Shami, Paul Gavin (2019-05)
A Study into the Effect of Different Nozzles Shapes and Fiber-Reinforcement in 3D Printed Mortar - Soltan Daniel, Li Victor (2018-03)
A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing - Sun Junbo, Aslani Farhad, Lu Jenny, Wang Lining et al. (2021-06)
Fiber-Reinforced Lightweight Engineered Cementitious Composites for 3D Concrete Printing - Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model - Weng Yiwei, Lu Bing, Li Mingyang, Liu Zhixin et al. (2018-09)
Empirical Models to Predict Rheological Properties of Fiber-Reinforced Cementitious Composites for 3D Printing - Wolfs Robert, Bos Freek, Salet Theo (2018-02)
Early-Age Mechanical Behaviour of 3D Printed Concrete:
Numerical Modelling and Experimental Testing - Wolfs Robert, Bos Freek, Salet Theo (2019-03)
Hardened Properties of 3D Printed Concrete:
The Influence of Process Parameters on Inter-Layer Adhesion - Xiao Jianzhuang, Bai Meiyan, Wu Yuching, Duan Zhenhua et al. (2024-01)
Inter-Layer Bonding Strength and Pore Characteristics of 3D Printed Engineered Cementitious Composites - Xiao Jianzhuang, Liu Haoran, Ding Tao (2020-11)
Finite-Element-Analysis on the Anisotropic Behavior of 3D Printed Concrete under Compression and Flexure - Xu Nuoyan, Qian Ye (2023-04)
Effects of Fiber-Volume Fraction, Fiber Length, Water-Binder Ratio, and Nano-Clay Addition on the 3D Printability of Strain-Hardening Cementitious Composites - Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete - Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-01)
Fresh and Anisotropic-Mechanical Properties of 3D Printable Ultra-High-Ductile Concrete with Crumb-Rubber - Yu Jing, Leung Christopher (2018-09)
Impact of 3D Printing-Direction on Mechanical Performance of Strain-Hardening Cementitious Composite (SHCC) - Yu Kequan, McGee Wesley, Ng Tsz, Zhu He et al. (2021-02)
3D Printable Engineered Cementitious Composites:
Fresh and Hardened Properties - Zhang Yifan, Aslani Farhad (2021-08)
Development of Fiber-Reinforced Engineered Cementitious Composite Using Polyvinyl-Alcohol-Fiber and Activated Carbon-Powder for 3D Concrete Printing - Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
Mix-Design Concepts for 3D Printable Concrete:
A Review - Zhang Hanghua, Xiao Jianzhuang (2021-08)
Plastic Shrinkage and Cracking of 3D Printed Mortar with Recycled Sand - Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
Fresh Properties of a Novel 3D Printing Concrete Ink - Zhou Wen, Zhang Yamei, Ma Lei, Li Victor (2022-04)
Influence of Printing Parameters on 3D Printing Engineered Cementitious Composites - Zhu Binrong, Pan Jinlong, Li Junrui, Wang Penghui et al. (2022-07)
Relationship Between Microstructure and Strain-Hardening Behavior of 3D Printed Engineered Cementitious Composites - Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction - Zhu Binrong, Pan Jinlong, Zhou Zhenxin, Cai Jingming (2021-04)
Mechanical Properties of Engineered Cementitious Composites Beams Fabricated by Extrusion-Based 3D - Zhu Lingli, Yao Jie, Zhao Yu, Ruan Wenqiang et al. (2022-12)
Effects of Composite Cementation System on Rheological and Working Performances of Fresh 3D Printable Engineered Cementitious Composites
10 Citations
- Tulliani Jean-Marc (2025-11)
Latest Developments in 3D-Printed Engineered Cementitious Composites:
Technologies, Prospects, and Challenges - Chen Wenguang, Yu Jie, Ye Junhong, Yu Jiangtao et al. (2025-11)
3D Printed High-Performance Fiber-Reinforced Cementitious Composites:
Fresh, Mechanical, and Microstructural Properties - Liu Renlong, Cheng Zhangqi (2025-10)
Interlayer Fracture Properties of 3D-Printed Cement-Based Structures:
Influencing Factors and Mechanisms - Delavar Mohammad, Aslani Farhad, Sercombe Tim (2025-10)
Cracking Behaviour in 3D Concrete Printed Fiber-Reinforced Cementitious Composites:
A Review - Ingle Vaibhav, Prem Prabhat (2025-07)
Acoustic Emission Examination of 3D Printed Ultra-High Performance Concrete with and Without Coarse Aggregate Under Fresh and Hardened States - Gomez Jaramillo Laura, Luković Mladena, Šavija Branko, Zhou Wen (2025-06)
Recycled Sand for 3D-Printed Strain Hardening Cementitious Composite:
A Review of Recent Developments - Ye Huzi, He Qianpeng, Ping Pengxin, Pan Jinlong et al. (2025-06)
Anisotropic Flexural Behavior and Energy Absorption of 3D Printed Engineered Cementitious Composites (3DP-ECC) Beams Under Low-Velocity Impact - Kim Tae, Oh Sangwoo, Lee Jinsuk, Dong Won-Jun et al. (2025-05)
Effects of 3D-Printed Concrete Permanent Formwork on the Flexural Behavior of Reinforced Concrete Beams:
Experimental and Analytical Investigations - Zhang Yuying, Zhu Xiaohong, Li Muduo, Zhang Chao et al. (2025-04)
3D Printing Technology in Concrete Construction - Du Guoqiang, Sun Yan, Qian Ye (2025-03)
In-Plane and Out-of-Plane Compressive Performance of Bio-Inspired 3D Printed Strain-Hardening Cementitious Composite Lattice Structures
BibTeX
@article{asgh_moha_petr_ghan.2024.3PaIoECC,
author = "Y. Asghari and S. E. Mohammadyan-Yasouj and M. Petrů and H. Ghandvar and S. S. R. Koloor",
title = "3D Printing and Implementation of Engineered Cementitious Composites: A Review",
doi = "10.1016/j.cscm.2024.e03462",
year = "2024",
journal = "Case Studies in Construction Materials",
pages = "e03462",
}
Formatted Citation
Y. Asghari, S. E. Mohammadyan-Yasouj, M. Petrů, H. Ghandvar and S. S. R. Koloor, “3D Printing and Implementation of Engineered Cementitious Composites: A Review”, Case Studies in Construction Materials, p. e03462, 2024, doi: 10.1016/j.cscm.2024.e03462.
Asghari, Y., S. E. Mohammadyan-Yasouj, M. Petrů, H. Ghandvar, and S. S. R. Koloor. “3D Printing and Implementation of Engineered Cementitious Composites: A Review”. Case Studies in Construction Materials, 2024, e03462. https://doi.org/10.1016/j.cscm.2024.e03462.