Skip to content

Mechanical and Microstructural Properties of 3D Printed Aluminate-Cement-Based Composite Exposed to Elevated Temperatures (2022-09)

10.1016/j.conbuildmat.2022.129144

 Wang Li, Lin Wenyu, Ma Hui, Li Dexin, Wang Qiao
Journal Article - Construction and Building Materials, Vol. 353

Abstract

Investigation into the mechanical performances of 3D-printed composite exposed to elevated high-temperatures is of great significance for broadening the engineering application field of 3D printing. Aluminate cement-based composite was developed for 3D printing. The setting time, flowability, and printability of the composite material were adjusted by adding proper dosages of retarder. Then the compressive and flexural properties of the 3D-printed aluminate cement-based composites were evaluated, as well as the residual mechanical properties after heat-treatment at 200, 400, 600, 800, and 1000 ◦C, respectively. The pore distribution characteristics and the difference between the interface and matrix areas of 3D-printed composites after heat-treatment were systematically quantified through CT microscopic examinations and their relationship with the mechanical anisotropy was clarified. Additionally, the microstructural evolution were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD) and thermogravimetric-differential scanning calorimetry (TG-DSC) technologies. The results indicate that high temperature has a more significant effect on the interfaces of 3Dprinted concrete, and the increase of porosity at interfaces was 23 % higher than that at the matrix after exposure to 1000 ◦C. At different temperatures, the average porosity in the Y direction was lower than that in the X and Z directions, and therefore result in the damage anisotropy.

36 References

  1. Alchaar Aktham, Tamimi Adil (2020-10)
    Mechanical Properties of 3D Printed Concrete in Hot Temperatures
  2. Bai Gang, Wang Li, Ma Guowei, Sanjayan Jay et al. (2021-03)
    3D Printing Eco-Friendly Concrete Containing Under-Utilised and Waste Solids as Aggregates
  3. Bai Gang, Wang Li, Wang Fang, Ma Guowei (2021-08)
    In-Process Reinforcing Method:
    Dual 3D Printing Procedure for Ultra-High-Performance Concrete Reinforced Cementitious Composites
  4. Buswell Richard, Silva Wilson, Bos Freek, Schipper Roel et al. (2020-05)
    A Process Classification Framework for Defining and Describing Digital Fabrication with Concrete
  5. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  6. Chen Yuning, Jia Lutao, Liu Chao, Zhang Zedi et al. (2022-01)
    Mechanical Anisotropy Evolution of 3D Printed Alkali-Activated Materials with Different GGBFS-FA Combinations
  7. Cicione Antonio, Kruger Jacques, Walls Richard, Zijl Gideon (2020-05)
    An Experimental Study of the Behavior of 3D Printed Concrete at Elevated Temperatures
  8. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  9. Lee Hojae, Kim Jang-Ho, Moon Jae-Heum, Kim Won-Woo et al. (2019-08)
    Correlation Between Pore Characteristics and Tensile Bond Strength of Additive Manufactured Mortar Using X-Ray Computed Tomography
  10. Li Zhijian, Wang Li, Ma Guowei (2018-05)
    Method for the Enhancement of Buildability and Bending-Resistance of 3D Printable Tailing Mortar
  11. Li Zhijian, Wang Li, Ma Guowei, Sanjayan Jay et al. (2020-07)
    Strength and Ductility Enhancement of 3D Printing Structure Reinforced by Embedding Continuous Micro-Cables
  12. Ma Guowei, Buswell Richard, Silva Wilson, Wang Li et al. (2022-03)
    Technology Readiness:
    A Global Snapshot of 3D Concrete Printing and the Frontiers for Development
  13. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  14. Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
    Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing
  15. Ma Lei, Zhang Qing, Jia Zijian, Liu Chao et al. (2021-11)
    Effect of Drying Environment on Mechanical Properties, Internal RH and Pore-Structure of 3D Printed Concrete
  16. Mechtcherine Viktor, Buswell Richard, Kloft Harald, Bos Freek et al. (2021-02)
    Integrating Reinforcement in Digital Fabrication with Concrete:
    A Review and Classification Framework
  17. Menna Costantino, Mata-Falcón Jaime, Bos Freek, Vantyghem Gieljan et al. (2020-04)
    Opportunities and Challenges for Structural Engineering of Digitally Fabricated Concrete
  18. Perrot Arnaud, Pierre Alexandre, Nerella Venkatesh, Wolfs Robert et al. (2021-07)
    From Analytical Methods to Numerical Simulations:
    A Process Engineering Toolbox for 3D Concrete Printing
  19. Putten Jolien, Schutter Geert, Tittelboom Kim (2018-09)
    The Effect of Print Parameters on the (Micro)structure of 3D Printed Cementitious Materials
  20. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
    3D Printable Concrete:
    Mixture-Design and Test-Methods
  21. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2019-08)
    Mechanical Characterization of 3D Printable Concrete
  22. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  23. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2021-06)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete:
    Correction
  24. Sun Xiaoyan, Zhou Jiawei, Wang Qun, Shi Jiangpeng et al. (2021-11)
    PVA-Fiber-Reinforced High-Strength Cementitious Composite for 3D Printing:
    Mechanical Properties and Durability
  25. Wang Li, Ma Hui, Li Zhijian, Ma Guowei et al. (2021-07)
    Cementitious Composites Blending with High Belite-Sulfoaluminate and Medium-Heat Portland Cements for Large-Scale 3D Printing
  26. Wang Li, Ma Guowei, Liu Tianhao, Buswell Richard et al. (2021-07)
    Inter-Layer Reinforcement of 3D Printed Concrete by the In-Process Deposition of U-Nails
  27. Wang Hailong, Shao Jianwen, Zhang Jing, Zou Daoqin et al. (2021-11)
    Bond Shear Performances and Constitutive Model of Interfaces Between Vertical and Horizontal Filaments of 3D Printed Concrete
  28. Wang Li, Tian Zehao, Ma Guowei, Zhang Mo (2020-02)
    Inter-Layer Bonding Improvement of 3D Printed Concrete with Polymer-Modified Mortar:
    Experiments and Molecular Dynamics Studies
  29. Wang Li, Yang Yu, Yao Liang, Ma Guowei (2022-02)
    Interfacial Bonding Properties of 3D Printed Permanent Formwork with the Post-Casted Concrete
  30. Weng Yiwei, Li Mingyang, Wong Teck, Tan Ming (2021-01)
    Synchronized Concrete and Bonding-Agent-Deposition-System for Inter-Layer Bond Strength Enhancement in 3D Concrete Printing
  31. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  32. Xiao Jianzhuang, Han Nv, Zhang Lihai, Zou Shuai (2021-05)
    Mechanical and Microstructural Evolution of 3D Printed Concrete with Polyethylene-Fiber and Recycled Sand at Elevated Temperatures
  33. Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
    Large-Scale 3D Printing Concrete Technology:
    Current Status and Future Opportunities
  34. Zhang Hanghua, Xiao Jianzhuang, Duan Zhenhua, Zou Shuai et al. (2022-06)
    Effects of Printing Paths and Recycled Fines on Drying Shrinkage of 3D Printed Mortar
  35. Zhou Wen, Zhang Yamei, Ma Lei, Li Victor (2022-04)
    Influence of Printing Parameters on 3D Printing Engineered Cementitious Composites
  36. Zhu Binrong, Nematollahi Behzad, Pan Jinlong, Zhang Yang et al. (2021-04)
    3D Concrete Printing of Permanent Formwork for Concrete Column Construction

18 Citations

  1. Liu Mei, Wang Huai, Li Yang, Li Xiulin et al. (2025-12)
    Post-Fire Mechanical Properties of 3D Printed Concrete Under Different Cooling Methods
  2. Taborda-Llano Isabella, Hoyos-Montilla Ary, Asensio Eloy, Guerrero Ana et al. (2025-12)
    Influence of the Construction Process Parameters on the Mechanical Performance and Durability of 3D Printed Concrete:
    A Systematic Review
  3. Cheng Jianhua, Chen Meng, Ge Yulin, Zhang Tong (2025-12)
    Mechanical Behavior and Damage Evolution of 3D-Printed Engineered Cementitious Composites at Elevated Temperatures:
    Insights from Acoustic Emission Characterization
  4. Medeiros Fernanda, Anjos Marcos, Maia José, Dias Leonardo et al. (2025-08)
    Effect of Sisal Fibers on the Behavior of 3D-Printed Cementitious Mixtures Exposed to High Temperatures
  5. Ma Jinyi, Zhang Haiyan, Wang Yanzhi, Xiong Lu et al. (2025-07)
    Effect of Clay Brick Powder and Recycled Fine Aggregates on Properties of 3D Printed Concrete After High Temperature Exposure
  6. Ali Syed, Haq Mohd, Khan Rizwan, Hashmi Ahmad (2025-07)
    A Comprehensive Review on 3D Printing of Concrete:
    Materials, Methods and Mechanical Properties
  7. Zhou Biao, Zhou Hongru, Yoshioka Hideki, Noguchi Takafumi et al. (2025-04)
    Mechanical and Microstructure Evolution of 3D Printed Concrete Interlayer at Elevated Temperatures
  8. Şahin Hatice, Kaya Yahya, Akgümüş Fatih, Mardani Naz et al. (2025-03)
    Degradation of Mechanical Properties of 3D Fiber Reinforced Printed Concrete Mixtures Exposed to Elevated Temperatures
  9. Wang Qingwei, Han Song, Liu Qi, Yang Junhao et al. (2024-12)
    Research on the 3D Printing Process and Filament Shape of Cementitious Materials in Low Gravity
  10. Mousavi Seyed, Ahmadi Khatereh, Dehestani Mehdi (2024-11)
    Fire Response of 3D Printed Concrete
  11. Hoang Pham, Moon Hyosoo, Ahn Yonghan (2024-10)
    Optimizing 3D Printed Concrete Mixtures for Extraterrestrial Habitats:
    A Machine Learning Framework
  12. Shen Wenbin, Wang Hailong, Sun Xiaoyan (2024-09)
    Influence of Coarse Aggregates on the Performance of 3D Printing Concrete
  13. Huseien Ghasan, Tan Shea, Saleh Ali, Lim Nor et al. (2024-08)
    Test-Procedures and Mechanical Properties of Three-Dimensional Printable Concrete Enclosing Different Mix-Proportions:
    A Review and Bibliometric Analysis
  14. Tittelboom Kim, Mohan Dhanesh, Šavija Branko, Keita Emmanuel et al. (2024-08)
    On the Micro-and Meso-Structure and Durability of 3D Printed Concrete Elements
  15. Zhong Kuangnan, Huang Kaiyun, Liu Zhichao, Wang Fazhou et al. (2024-07)
    CO2-Driven Additive Manufacturing of Sustainable Steel-Slag-Mortars
  16. He Lewei, Chen Bingzhi, Liu Qimin, Chen Hao et al. (2024-07)
    A Quasi-Exponential Distribution of Interfacial Voids and Its Effect on the Inter-Layer Strength of 3D Printed Concrete
  17. Azimi Zahir, Mousavi Moein, Bengar Habib, Javadi Akbar (2023-12)
    Study on the Post-Fire Mechanical Properties of Lightweight 3D Printed Concrete Containing Expanded Perlite as Partial Replacement of Natural Sand
  18. Wang Li, Ye Kehan, Wan Qian, Li Zhijian et al. (2023-05)
    Inclined 3D Concrete Printing:
    Build-Up Prediction and Early-Age Performance-Optimization

BibTeX
@article{wang_lin_ma_li.2022.MaMPo3PACBCEtET,
  author            = "Li Wang and Wenyu Lin and Hui Ma and Dexin Li and Qiao Wang",
  title             = "Mechanical and Microstructural Properties of 3D Printed Aluminate-Cement-Based Composite Exposed to Elevated Temperatures",
  doi               = "10.1016/j.conbuildmat.2022.129144",
  year              = "2022",
  journal           = "Construction and Building Materials",
  volume            = "353",
}
Formatted Citation

L. Wang, W. Lin, H. Ma, D. Li and Q. Wang, “Mechanical and Microstructural Properties of 3D Printed Aluminate-Cement-Based Composite Exposed to Elevated Temperatures”, Construction and Building Materials, vol. 353, 2022, doi: 10.1016/j.conbuildmat.2022.129144.

Wang, Li, Wenyu Lin, Hui Ma, Dexin Li, and Qiao Wang. “Mechanical and Microstructural Properties of 3D Printed Aluminate-Cement-Based Composite Exposed to Elevated Temperatures”. Construction and Building Materials 353 (2022). https://doi.org/10.1016/j.conbuildmat.2022.129144.