Skip to content

Early-Age Shrinkage Phenomena of 3D Printed Cementitious Materials with Superabsorbent Polymers (2020-12)

10.1016/j.jobe.2020.102059

 van der Putten Jolien,  Snoeck Didier, de Coensel R.,  de Schutter Geert,  van Tittelboom Kim
Journal Article - Journal of Building Engineering, Vol. 35

Abstract

3D printing of cementitious materials is a novel construction method, capable of producing complex geometries without the use of expensive formwork. However, due to the lack of molding, additional shrinkage will be induced and the risk of crack formation will increase. As cracks introduce ingress paths for chemical substances, it will harm the durability of the printed element. One potential way to tackle this disadvantage is by including superabsorbent polymers (SAPs) in the cementitious material. As these polymers are able to absorb part of the mixing water and to release it during hardening, they induce internal curing and can mitigate self-desiccation, plastic and autogenous shrinkage. Additionally, as drying shrinkage and the related early-age crack formation are major issues in printed structures, the mitigating effect of the SAPs on the latter is also investigated. Three different SAPs (bulk-polymerized monovalent salt polyacrylates with an irregular shape and different size) were used in this research to fabricate printed elements and their influence on the durability and the mechanical properties was correlated with the microstructural changes. First results showed that in general, the addition of superabsorbent polymers mitigates shrinkage in printed materials up to 200%. Inclusion of SAPs also reduced the nanoporosity in the pore size range of 100 nm–500 nm and increase the amount of voids with a diameter above 700 nm, resulting in less microcracks and a decreased amount of preferential ingress paths for chemical substances. On the other hand, the total air content increases with the addition of SAPs, proportional to the amount of SAPs and additional water added, due to the formation of macropores. The addition of SAPs did not seem to have a pronounced influence on the mechanical properties of the printed specimens with a reference water-to-cement ratio of 0.37.

9 References

  1. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  2. Federowicz Karol, Kaszyńska Maria, Zieliński Adam, Hoffmann Marcin (2020-06)
    Effect of Curing Methods on Shrinkage Development in 3D Printed Concrete
  3. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  4. Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2020-08)
    Plastic Shrinkage Cracking in 3D Printed Concrete
  5. Putten Jolien, Deprez Maxim, Cnudde Veerle, Schutter Geert et al. (2019-09)
    Microstructural Characterization of 3D Printed Cementitious Materials
  6. Putten Jolien, Schutter Geert, Tittelboom Kim (2019-07)
    Surface-Modification as a Technique to Improve Inter-Layer Bonding Strength in 3D Printed Cementitious Materials
  7. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  8. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  9. Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
    Digital Concrete:
    A Review

63 Citations

  1. Federowicz Karol, Sibera Daniel, Tošić Nikola, Zieliński Adam et al. (2026-01)
    Early-Age Shrinkage Monitoring of 3D-Printed Cementitious Mixtures: Comparison of Measuring Techniques and Low-Cost Alternatives
  2. Xu Fengming, Yu Jie, Teng Fei, Lin Xiaoshan et al. (2025-12)
    Application of Recycled Tile as Internal Curing Material in 3D-Printed Engineered Cementitious Composites
  3. Abbas Yassir, Alsaif Abdulaziz (2025-11)
    Explainable Data-Driven Modeling for Optimized Mix Design of 3D-Printed Concrete:
    Interpreting Nonlinear Synergies Among Binder Components and Proportions
  4. Xia Kailun, Chen Yuning, Jia Lutao, Quan Shitao et al. (2025-10)
    The Impact of Internal Stress Generated During the Printing Process on the Early-Age Properties of 3D Printed Concrete
  5. Jesus Manuel, Dias Ricardo, Teixeira João, Delgado João et al. (2025-09)
    Optimisation of 3D Printable Cement- and Lime-Based Mortars for Built Heritage Rehabilitation
  6. Zhang Yi, Ren Qiang, Tittelboom Kim, Schutter Geert et al. (2025-09)
    Layer Interface in 3D Printed Cement-Based Materials:
    Heterogeneous Phase Distribution and New Insights into Formation Mechanism
  7. Kua Harn, Shi A., Kajandran V., Lam T. et al. (2025-09)
    Toward Sustainable Construction 3D Printing:
    Limestone and Non-Calcined Recycled Marine Clay as Partial Cement Replacement
  8. Zhang Chao, Ren Juanjuan, Zhang Shihao, Guo Yipu et al. (2025-07)
    Advanced Impact Resistance Design Through 3D-Printed Concrete Technology:
    Unleashing the Potential of Additive Manufacturing for Protective Structures
  9. Zafar Tayyab, Zafar Muhammad, Hojati Maryam (2025-07)
    Exploring the 3D Printability of Engineered Cementitious Composites with Internal Curing for Resilient Construction in Arid Regions
  10. Srinivas Dodda, Panda Biranchi, Suraneni Prannoy, Sitharam Thallak (2025-06)
    Mix Design Optimization of 3D-Printed Cementitious Composites for Marine Applications:
    Impact of Binder Composition, Accelerated Carbonation, and PVA Fibers on Strength and Durability
  11. Els Heinrich, Zijl Gideon, Villiers Wibke (2025-06)
    A Review of Shrinkage and Restrained Shrinkage Cracking in 3D Concrete Printing
  12. Mishra Sanjeet, Snehal K., Das B., Chandrasekaran Rajasekaran et al. (2025-05)
    From Printing to Performance:
    A Review on 3D Concrete Printing Processes, Materials, and Life Cycle Assessment
  13. Zhao Herui, Jiang Quan, Xia Yong, Hou Dongqi et al. (2025-04)
    Microbial-Induced Calcareous Precipitation Effect on Tensile Strength and Early Age Shrinkage of 3D Printed Concrete
  14. Liu Chuanbei, Zou Mengtong, Chen Xuemei, Deng Yongjun et al. (2025-04)
    Feasibility Study of 3D-Printed Rubberized Concrete as a Permanent Formwork:
    Mechanical Properties, Interlayer Interface and Durability
  15. Chai Hwa, Shiotani Tomoki (2025-03)
    Opening Letter of RILEM TC QPA:
    Quality and Performance Assurance of Additively Manufactured Cementitious Composites by Advanced Non-Invasive Techniques
  16. Givkashi Mohammad, Moodi Faramarz, Ramezanianpour Amir (2025-03)
    Investigating Shrinkage and Mechanical Properties of 3D Printed Concretes Under Different Curing Conditions
  17. Sakhare Vishakha, Najar Mohamed, Deshpande Sachin (2024-12)
    Printing Performance of 3D Printed Geopolymer Through Pumpability, Extrudability, Buildability Properties:
    A Review
  18. Zhou Longfei, Gou Mifeng, Zhang Haibo, Hama Yukio (2024-12)
    Investigation of Activated Bauxite-Tailings for Application in 3D Printed Concrete via a Modified Anderson and Anderson-Model
  19. Markin Slava, Cordova Julian, Combrinck Riaan, Mechtcherine Viktor (2024-09)
    Deformation Behavior of 3D Printed Concrete Elements Induced by Plastic Shrinkage
  20. Liu Chao, Banthia Nemkumar, Shi Yifan, Jia Zijian et al. (2024-09)
    Early-Age Shrinkage Mitigation and Quantitative Study on Water Loss Kinetics of 3D Printed Foam-Concrete Modified with Superabsorbent Polymers
  21. Markin Slava, Mechtcherine Viktor (2024-09)
    Mitigating Plastic Shrinkage and Cracking in 3D Printed Concrete Through Surface Rewetting
  22. Ler Kee-Hong, Ma Chau-Khun, Chin Chee-Long, Ibrahim Izni et al. (2024-08)
    Porosity and Durability Tests on 3D Printing Concrete:
    A Review
  23. Tittelboom Kim, Mohan Dhanesh, Šavija Branko, Keita Emmanuel et al. (2024-08)
    On the Micro-and Meso-Structure and Durability of 3D Printed Concrete Elements
  24. Bekaert Michiel, Tittelboom Kim, Schutter Geert (2024-07)
    Influence of Curing Conditions on the Shrinkage Behavior of Three-Dimensional Printed Concrete Formwork
  25. Li Bingying, Ding Tao, Qu Changwei, Liu Wei (2024-07)
    Modification of Fresh and Hardened Properties of 3D Printed Recycled Mortar by Superabsorbent Polymers
  26. Markin Slava, Combrinck Riaan, Mechtcherine Viktor (2024-07)
    Specifics of Plastic Shrinkage in 3D Printed Concrete Elements
  27. Lee Yoon, Lee Sang, Kim Jae, Jeong Hoseong et al. (2024-07)
    Inter-Layer Bond Strength of 3D Printed Concrete Members with Ultra-High-Performance Concrete Mix
  28. Wu Yiwen, Liu Chao, Bai Guoliang, Liu Huawei et al. (2024-05)
    Effect of Time Interval on the Inter-Layer Adhesion of 3D Printed Concrete with Recycled Sand:
    Multi-Factor Influencing Mechanisms and Superabsorbent Polymer Enhancement
  29. Chen Yuxuan, Zhang Longfei, Wei Kai, Gao Huaxing et al. (2024-04)
    Rheology-Control and Shrinkage-Mitigation of 3D Printed Geopolymer Concrete Using Nano-Cellulose and Magnesium-Oxide
  30. Yang Yekai, Lu Pengyuan, Liu Zhongxian, Dong Liang et al. (2024-04)
    Effect of Steel-Fiber with Different Orientations on Mechanical Properties of 3D Printed Steel-Fiber-Reinforced Concrete:
    Meso-Scale Finite-Element-Analysis
  31. Ma Lei, Jia Zijian, Chen Yuning, Jiang Yifan et al. (2024-03)
    Water Loss and Shrinkage Prediction in 3D Printed Concrete with Varying w/b and Specimen Sizes
  32. Shi Yifan, Jia Lutao, Jia Zijian, Ma Lei et al. (2024-03)
    Early-Age Inhomogeneous Deformation of 3D Printed Concrete:
    Characteristics and Influences of Superplasticizer and Water-Binder Ratio
  33. Jia Lutao, Jia Zijian, Zhang Zedi, Tang Zhenzhong et al. (2024-02)
    Effect of Recycled Brick-Powder with Various Particle-Features on Early-Age Hydration, Water-State, and Rheological Properties of Blended Cement-Paste in the Context of 3D Printing
  34. Zhou Wen, Zhu He, Hu Wei-Hsiu, Wollaston Ryan et al. (2024-02)
    Low-Carbon, Expansive Engineered Cementitious Composites (ECC) In the Context of 3D Printing
  35. Bekaert Michiel, Tittelboom Kim, Schutter Geert (2023-10)
    The Effect of Curing Conditions on the Service Life of 3D Printed Concrete Formwork
  36. Markin Slava, Mechtcherine Viktor (2023-10)
    The Effect of Layer Cross-Section on Plastic Shrinkage Cracking of 3D Printed Concrete Elements
  37. Liu Yi, Wang Li, Yuan Qiang, Peng Jianwei (2023-09)
    Effect of Coarse Aggregate on Printability and Mechanical Properties of 3D Printed Concrete
  38. Zhu Lingli, Zhang Meng, Zhang Yaqi, Yao Jie et al. (2023-07)
    Research Progress on Shrinkage Properties of Extruded 3D Printed Cement-Based Materials
  39. Han Xiaoyu, Yan Jiachuan, Chen Tiefeng, Tang Boyang et al. (2023-07)
    Plastic Shrinkage of 3D Printed Concrete Under Different Self-Weight of Upper Layers
  40. Ghasemi Alireza, Naser Mohannad (2023-07)
    Tailoring 3D Printed Concrete Through Explainable Artificial Intelligence
  41. Tu Haidong, Wei Zhenyun, Bahrami Alireza, Kahla Nabil et al. (2023-06)
    Recent Advancements and Future Trends in 3D Printing Concrete Using Waste-Materials
  42. Oh Sangwoo, Hong Geuntae, Choi Seongcheol (2023-05)
    Determining the Effect of Superabsorbent Polymers, Macrofibers, and Resting Time on the Rheological Properties of Cement Mortar Using Analysis of Variance:
    A 3D Printing Perspective
  43. Oh Sangwoo, Choi Seongcheol (2023-05)
    Effects of Superabsorbent Polymers (SAP) On the Rheological Behavior of Cement Mortars:
    A Rheological Study on Performance Requirements for 3D Printable Cementitious Materials
  44. Markin Slava, Mechtcherine Viktor (2023-03)
    Quantification of Plastic Shrinkage and Plastic Shrinkage Cracking of the 3D Printable Concretes Using 2D Digital Image Correlation
  45. Wang Li, Hu Yuanyuan, Wang Qiao, Cui Tianlong (2023-03)
    Shrinkage and Cracking Performance of PP/PVA Fiber-Reinforced 3D Printed Mortar
  46. Chen Yanjuan, Kuva Jukka, Mohite Ashish, Li Zhongsen et al. (2023-03)
    Investigation of the Internal Structure of Hardened 3D Printed Concrete by X-CT Scanning and Its Influence on the Mechanical Performance
  47. Ma Lei, Zhang Qing, Lombois-Burger Hélène, Jia Zijian et al. (2022-09)
    Pore-Structure, Internal Relative Humidity, and Fiber-Orientation of 3D Printed Concrete with Polypropylene-Fiber and Their Relation with Shrinkage
  48. Bekaert Michiel, Tittelboom Kim, Schutter Geert (2022-08)
    3D Printed Concrete as Stay-in-Place Formwork:
    Mechanics During Casting and Curing
  49. Nodehi Mehrab, Aguayo Federico, Nodehi Shahab, Gholampour Aliakbar et al. (2022-07)
    Durability Properties of 3D Printed Concrete
  50. Tao Jie-Lin, Lin Can, Luo Qiling, Long Wujian et al. (2022-07)
    Leveraging Internal Curing Effect of Fly-Ash-Cenosphere for Alleviating Autogenous Shrinkage in 3D Printing
  51. Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2022-06)
    Mitigating Early-Age Cracking in 3D Printed Concrete Using Fibers, Superabsorbent Polymers, Shrinkage Reducing Admixtures, B-CSA Cement and Curing Measures
  52. Danish Aamar, Khurshid Kiran, Mosaberpanah Mohammad, Ozbakkaloglu Togay et al. (2022-06)
    Micro-Structural Characterization, Driving Mechanisms, and Improvement-Strategies for Inter-Layer Bond Strength of Additive Manufactured Cementitious Composites:
    A Review
  53. Zhang Hanghua, Xiao Jianzhuang, Duan Zhenhua, Zou Shuai et al. (2022-06)
    Effects of Printing Paths and Recycled Fines on Drying Shrinkage of 3D Printed Mortar
  54. Cao Xiangpeng, Yu Shiheng, Cui Hongzhi, Li Zongjin (2022-04)
    3D Printing Devices and Reinforcing Techniques for Extruded Cement-Based Materials:
    A Review
  55. Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2022-04)
    A Plastic Shrinkage Cracking-Risk-Model for 3D Printed Concrete Exposed to Different Environments
  56. Ma Guowei, Buswell Richard, Silva Wilson, Wang Li et al. (2022-03)
    Technology Readiness:
    A Global Snapshot of 3D Concrete Printing and the Frontiers for Development
  57. Putten Jolien, Nerella Venkatesh, Mechtcherine Viktor, Hondt Mélody et al. (2022-01)
    Properties and Testing of Printed Cement-Based Materials in Hardened State
  58. Ma Lei, Zhang Qing, Jia Zijian, Liu Chao et al. (2021-11)
    Effect of Drying Environment on Mechanical Properties, Internal RH and Pore-Structure of 3D Printed Concrete
  59. Rahul Attupurathu, Mohan Manu, Schutter Geert, Tittelboom Kim (2021-10)
    3D Printable Concrete with Natural and Recycled Coarse Aggregates:
    Rheological, Mechanical and Shrinkage Behavior
  60. Tran Mien, Cu Yen, Le Chau (2021-10)
    Rheology and Shrinkage of Concrete Using Polypropylene-Fiber for 3D Concrete Printing
  61. Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2021-09)
    Modelling the Inter-Layer Bond Strength of 3D Printed Concrete with Surface Moisture
  62. Babafemi Adewumi, Kolawole John, Miah Md, Paul Suvash et al. (2021-06)
    A Concise Review on Inter-Layer Bond Strength in 3D Concrete Printing
  63. Tao Yaxin, Rahul Attupurathu, Lesage Karel, Yuan Yong et al. (2021-02)
    Stiffening Control of Cement-Based Materials Using Accelerators in In-Line Mixing Processes:
    Possibilities and Challenges

BibTeX
@article{putt_snoe_coen_schu.2021.EASPo3PCMwSP,
  author            = "Jolien van der Putten and Didier Snoeck and R. de Coensel and Geert de Schutter and Kim van Tittelboom",
  title             = "Early-Age Shrinkage Phenomena of 3D Printed Cementitious Materials with Superabsorbent Polymers",
  doi               = "10.1016/j.jobe.2020.102059",
  year              = "2021",
  journal           = "Journal of Building Engineering",
  volume            = "35",
}
Formatted Citation

J. van der Putten, D. Snoeck, R. de Coensel, G. de Schutter and K. van Tittelboom, “Early-Age Shrinkage Phenomena of 3D Printed Cementitious Materials with Superabsorbent Polymers”, Journal of Building Engineering, vol. 35, 2021, doi: 10.1016/j.jobe.2020.102059.

Putten, Jolien van der, Didier Snoeck, R. de Coensel, Geert de Schutter, and Kim van Tittelboom. “Early-Age Shrinkage Phenomena of 3D Printed Cementitious Materials with Superabsorbent Polymers”. Journal of Building Engineering 35 (2021). https://doi.org/10.1016/j.jobe.2020.102059.