Skip to content

Linking Fresh Paste Microstructure, Rheology and Extrusion-Characteristics of Cementitious Binders for 3D Printing (2019-01)

10.1111/jace.16305

 Nair Sooraj, Alghamdi Hussam, Arora Aashay, Mehdipour Iman,  Sant Gaurav,  Neithalath Narayanan
Journal Article - Journal of the American Ceramic Society, Vol. 102, Iss. 7, pp. 3951-3964

Abstract

Cementitious binders amenable to extrusion‐based 3D printing are formulated by tailoring the fresh microstructure through the use of fine limestone powder or a combination of limestone powder and microsilica or metakaolin. Mixtures are proportioned with and without a superplasticizer to enable different particle packings at similar printability levels. A simple microstructural parameter, which implicitly accounts for the solid volume and inverse square dependence of particle size on yield stress can be used to select preliminary material combinations for printable binders. The influence of composition/microstructure on the response of pastes to extension or squeezing are also brought out. Extrusion rheology is used in conjunction with a phenomenological model to better understand the properties of significance in extrusion‐based printing of cementitious materials. The extrusion yield stress and die wall slip shear stress extracted from the model enables an understanding of their relationships with the fresh paste microstructure, which are crucial in selecting binders, extrusion geometry, and processing parameters for 3D printing.

24 References

  1. Biernacki Joseph, Bullard Jeffrey, Sant Gaurav, Banthia Nemkumar et al. (2017-04)
    Cements in the 21st Century:
    Challenges, Perspectives, and Opportunities
  2. Bosscher Paul, Williams Robert, Bryson L., Castro-Lacouture Daniel (2007-04)
    Cable-Suspended Robotic Contour Crafting System
  3. Buswell Richard, Soar Rupert, Gibb Alistar, Thorpe Tony (2006-06)
    Freeform Construction:
    Mega-Scale Rapid Manufacturing for Construction
  4. Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
    Large-Scale 3D Printing of Ultra-High-Performance Concrete:
    A New Processing Route for Architects and Builders
  5. Hager Izabela, Golonka Anna, Putanowicz Roman (2016-08)
    3D Printing of Buildings and Building Components as the Future of Sustainable Construction?
  6. Hambach Manuel, Volkmer Dirk (2017-02)
    Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste
  7. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  8. Khoshnevis Behrokh (2003-11)
    Automated Construction by Contour Crafting:
    Related Robotics and Information Technologies
  9. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  10. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  11. Lim Sungwoo, Buswell Richard, Valentine Philip, Piker Daniel et al. (2016-06)
    Modelling Curved-Layered Printing Paths for Fabricating Large-Scale Construction Components
  12. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  13. Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
    Additive Manufacturing of Geopolymer for Sustainable Built Environment
  14. Panda Biranchi, Tan Ming (2018-03)
    Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing
  15. Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
    Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing
  16. Papachristoforou Michail, Mitsopoulos Vasilios, Stefanidou Maria (2018-10)
    Evaluation of Workability Parameters in 3D Printing Concrete
  17. Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
    Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction
  18. Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
    Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques
  19. Reiter Lex, Wangler Timothy, Roussel Nicolas, Flatt Robert (2018-06)
    The Role of Early-Age Structural Build-Up in Digital Fabrication with Concrete
  20. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  21. Wangler Timothy, Lloret-Fritschi Ena, Reiter Lex, Hack Norman et al. (2016-10)
    Digital Concrete:
    Opportunities and Challenges
  22. Wu Peng, Wang Jun, Wang Xiangyu (2016-04)
    A Critical Review of the Use of 3D Printing in the Construction Industry
  23. Yang Pu, Nair Sooraj, Neithalath Narayanan (2018-09)
    Discrete Element Simulations of Rheological Response of Cementitious Binders as Applied to 3D Printing
  24. Zhang Jing, Khoshnevis Behrokh (2012-09)
    Optimal Machine Operation Planning for Construction by Contour Crafting

58 Citations

  1. Patel Aniket, Tripathi Avinaya, Kiran Ravi, Santhanam Manu et al. (2025-11)
    Decoupling Early-Age Free Shrinkage and Restraint Effects in 3D Printed Concrete Using Digital Image Correlation
  2. Diggs-McGee Brandy, Samouh Hamza, Garg Nishant (2025-11)
    Predicting Cementitious Set Times via Infrared Thermography:
    Potential Implications on Real-Time Quality Control During 3D Concrete Printing
  3. Ravichandran Darssni, Prem Prabhat, Bhaskara Gollapalli, Maheswaran Srinivasan et al. (2025-07)
    Time-Dependent Properties of 3D Printable Plain and Fibered High Strength Concrete Incorporating Copper Slag as an Alternate Fine Aggregate
  4. Si Wen, Khan Mehran, McNally Ciaran (2025-06)
    A Comprehensive Review of Rheological Dynamics and Process Parameters in 3D Concrete Printing
  5. Surehali Sahil, Venkatachalam Akshay, Divigalpitiya Ranjith, Kumar Aditya et al. (2025-06)
    Ultra-Low Dosages of Novel Graphene Types Enhance the Rheological Properties and Buildability of 3D Printed Binders
  6. Das B., Prathap Y., Sandeep Ankit, Vaghamshi Keval et al. (2025-05)
    Reviewing the Materials Selection, Rheology, Durability, and Microstructural Characteristics of 3D Printed Concrete
  7. Khan Mirza, Ahmed Aayzaz, Ali Tariq, Qureshi Muhammad et al. (2024-12)
    Comprehensive Review of 3D Printed Concrete, Life Cycle Assessment, AI and ML Models:
    Materials, Engineered Properties and Techniques for Additive Manufacturing
  8. Over Derya, Ozbakan Nesil, Bustani Mehmet, Karali Bulut (2024-10)
    An Investigation of Rheological Properties and Sustainability of Various 3D Printing Concrete Mixtures with Alternative Binders and Rheological Modifiers
  9. Gao Jianhao, Wang Chaofeng, Li Jiaqi, Chu S. (2024-09)
    Data-Driven Rheological-Model for 3D Printable Concrete
  10. Sovetova Meruyert, Calautit John (2024-07)
    Design, Calibration and Performance Evaluation of a Small-Scale 3D Printer for Accelerating Research in Additive Manufacturing in Construction
  11. Salaimanimagudam M., Jayaprakash Jaganathan (2024-07)
    Selection of Digital Fabrication Technique in the Construction Industry:
    A Multi-Criteria Decision-Making Approach
  12. González-Fonteboa Belén, Seara-Paz Sindy, Caneda-Martínez Laura (2024-06)
    3D Printing Concrete with Byproducts
  13. Gu Yucun, Khayat Kamal (2024-05)
    Extrudability Window and Off-Line Test-Methods to Predict Buildability of 3D Printing Concrete
  14. Oulkhir Fatima, Akhrif Iatimad, Jai Mostapha (2024-05)
    3D Concrete Printing Success:
    An Exhaustive Diagnosis and Failure-Modes-Analysis
  15. Zaid Osama, Ouni Mohamed (2024-04)
    Advancements in 3D Printing of Cementitious Materials:
    A Review of Mineral Additives, Properties, and Systematic Developments
  16. Tripathi Avinaya, Nair Sooraj, Chauhan Harshitsinh, Neithalath Narayanan (2024-04)
    Print Geometry Alterations and Layer-Staggering to Enhance Mechanical Properties of Plain and Fiber-Reinforced Three-Dimensional-Printed Concrete
  17. Pavlin Majda, Horvat Barbara, Cerc Korošec Romana, Capuder Rok et al. (2024-01)
    Characterisation of a 3D Printed Alkali-Activated Material Based on Waste-Mineral-Wool at Room and Elevated Temperatures
  18. Nair Sooraj, Tripathi Avinaya, Neithalath Narayanan (2023-11)
    Constitutive Response and Failure Progression in Digitally Fabricated 3D Printed Concrete Under Compression and Their Dependence on Print Layer-Height
  19. Surehali Sahil, Tripathi Avinaya, Neithalath Narayanan (2023-08)
    Anisotropy in Additively Manufactured Concrete Specimens Under Compressive Loading:
    Quantification of the Effects of Layer-Height and Fiber-Reinforcement
  20. Tu Haidong, Wei Zhenyun, Bahrami Alireza, Kahla Nabil et al. (2023-06)
    Recent Advancements and Future Trends in 3D Printing Concrete Using Waste-Materials
  21. Fan Dingqiang, Zhu Jinyun, Fan Mengxin, Lu Jianxian et al. (2023-04)
    Intelligent Design and Manufacturing of Ultra-High-Performance Concrete:
    A Review
  22. Gupta Shashank, Esmaeeli Hadi, Prihar Arjun, Ghantous Rita et al. (2023-04)
    Fracture- and Transport-Analysis of Heterogeneous 3D Printed Lamellar Cementitious Materials
  23. Chen Hao, Zhang Daobo, Chen Peng, Li Ning et al. (2023-03)
    A Review of the Extruder System Design for Large-Scale Extrusion-Based 3D Concrete Printing
  24. Panda Biranchi, Tran Jonathan (2023-03)
    Material-Design, Additive Manufacturing, and Performance of Cement-Based Materials
  25. Onanuga Babajide, Biernacki Joseph (2023-03)
    Assessing the Robustness of Cement-Hydrogel-Based Binders as 3D Printing Materials
  26. Ahmed Ghafur (2023-01)
    A Review of 3D Concrete Printing:
    Materials and Process Characterization, Economic Considerations and Environmental Sustainability
  27. Surehali Sahil, Tripathi Avinaya, Nimbalkar Atharwa, Neithalath Narayanan (2023-01)
    Anisotropic Chloride Transport in 3D Printed Concrete and Its Dependence on Layer-Height and Interface-Types
  28. Salaimanimagudam M., Jayaprakash Jaganathan (2022-11)
    Optimum Selection of Reinforcement, Assembly, and Formwork System for Digital Fabrication Technique in Construction Industry:
    A Critical Review
  29. Qian Hao, Hua Sudong, Yue Hongfei, Feng Guiyang et al. (2022-09)
    Utilization of Recycled Construction-Powder in 3D Concrete Printable Materials through Particle-Packing-Optimization
  30. Aydin Eylül, Kara Burhan, Bundur Zeynep, Özyurt Nilüfer et al. (2022-08)
    A Comparative Evaluation of Sepiolite and Nano-Montmorillonite on the Rheology of Cementitious Materials for 3D Printing
  31. Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2022-08)
    Rheometry for Concrete 3D Printing:
    A Review and an Experimental Comparison
  32. Ahmed Ghafur, Askandar Nasih, Jumaa Ghazi (2022-07)
    A Review of Large-Scale 3DCP:
    Material-Characteristics, Mix-Design, Printing-Process, and Reinforcement-Strategies
  33. Saruhan Vedat, Keskinateş Muhammer, Felekoğlu Burak (2022-04)
    A Comprehensive Review on Fresh State Rheological Properties of Extrusion-Mortars Designed for 3D Printing Applications
  34. Nodehi Mehrab, Ozbakkaloglu Togay, Gholampour Aliakbar (2022-04)
    Effect of Supplementary Cementitious Materials on Properties of 3D Printed Conventional and Alkali-Activated Concrete:
    A Review
  35. Tripathi Avinaya, Nair Sooraj, Neithalath Narayanan (2022-01)
    A Comprehensive Analysis of Buildability of 3D Printed Concrete and the Use of Bi-Linear Stress-Strain Criterion-Based Failure Curves Towards Their Prediction
  36. Amran Mugahed, Abdelgader Hakim, Onaizi Ali, Fediuk Roman et al. (2021-12)
    3D Printable Alkali-Activated Concretes for Building Applications:
    A Critical Review
  37. Nair Sooraj, Li Anling, Mobasher Barzin, Neithalath Narayanan (2021-12)
    Effect of Layer-Height on Tensile Stress-Distribution and Crack-Width and Propagation in 3D Printed Fiber-Reinforced Flexural Elements
  38. Nair Sooraj, Sant Gaurav, Neithalath Narayanan (2021-11)
    Mathematical Morphology-Based Point-Cloud-Analysis-Techniques for Geometry-Assessment of 3D Printed Concrete Elements
  39. Chen Yu, He Shan, Gan Yidong, Çopuroğlu Oğuzhan et al. (2021-11)
    A Review of Printing-Strategies, Sustainable Cementitious Materials and Characterization Methods in the Context of Extrusion-Based 3D Concrete Printing
  40. Kondepudi Kala, Subramaniam Kolluru (2021-11)
    Extrusion-Based Three-Dimensional Printing Performance of Alkali-Activated Binders
  41. Nair Sooraj, Neithalath Narayanan (2021-11)
    Flow Characterization of Three-Dimensional Printable Cementitious Pastes During Extrusion Using Capillary-Rheometry
  42. Nair Sooraj, Tripathi Avinaya, Neithalath Narayanan (2021-09)
    Examining Layer-Height Effects on the Flexural and Fracture Response of Plain and Fiber-Reinforced 3D Printed Beams
  43. Nedjar Boumediene (2021-09)
    Incremental Viscoelasticity at Finite Strains for the Modelling of 3D Concrete Printing
  44. Chen Yu, He Shan, Zhang Yu, Wan Zhi et al. (2021-08)
    3D Printing of Calcined-Clay-Limestone-Based Cementitious Materials
  45. Nedjar Boumediene (2021-07)
    On a Geometrically Non-Linear Incremental Formulation for the Modeling of 3D Concrete Printing
  46. Perrot Arnaud, Pierre Alexandre, Nerella Venkatesh, Wolfs Robert et al. (2021-07)
    From Analytical Methods to Numerical Simulations:
    A Process Engineering Toolbox for 3D Concrete Printing
  47. Nair Sooraj, Panda Subhashree, Tripathi Avinaya, Neithalath Narayanan (2021-06)
    Relating Print-Velocity and Extrusion-Characteristics of 3D Printable Cementitious Binders:
    Implications Towards Testing Methods
  48. Cui Peng, Wu Chun-ran, Chen Jie, Luo Fuming et al. (2021-02)
    Preparation of Magnesium-Oxysulfate Cement as a 3D Printing Material
  49. Kondepudi Kala, Subramaniam Kolluru (2021-02)
    Formulation of Alkali-Activated Fly-Ash-Slag Binders for 3D Concrete Printing
  50. Kristombu Baduge Shanaka, Navaratnam Satheeskumar, Zidan Yousef, McCormack Tom et al. (2021-01)
    Improving Performance of Additive Manufactured Concrete:
    A Review on Material Mix-Design, Processing, Inter-Layer Bonding, and Reinforcing-Methods
  51. Afarani Hajar, Carroll William, Garboczi Edward, Biernacki Joseph (2020-11)
    Designing 3D Printable Cementitious Materials with Gel-Forming Polymers
  52. Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
    Extrusion-Based Concrete 3D Printing from a Material Perspective:
    A State of the Art Review
  53. Nair Sooraj, Panda Subhashree, Santhanam Manu, Sant Gaurav et al. (2020-05)
    A Critical Examination of the Influence of Material-Characteristics and Extruder-Geometry on 3D Printing of Cementitious Binders
  54. Khan Mohammad, Sanchez Florence, Zhou Hongyu (2020-04)
    3D Printing of Concrete:
    Beyond Horizons
  55. Chen Mingxu, Yang Lei, Zheng Yan, Huang Yongbo et al. (2020-04)
    Yield-Stress and Thixotropy-Control of 3D Printed Calcium-Sulfoaluminate Cement Composites with Metakaolin Related to Structural Build-Up
  56. Özalp Fatih, Yılmaz Halit (2020-03)
    Fresh and Hardened Properties of 3D High-Strength Printing Concrete and Its Recent Applications
  57. Alghamdi Hussam, Neithalath Narayanan (2019-07)
    Synthesis and Characterization of 3D Printable Geopolymeric Foams for Thermally Efficient Building Envelope Materials
  58. Alghamdi Hussam, Nair Sooraj, Neithalath Narayanan (2019-02)
    Insights into Material-Design, Extrusion Rheology, and Properties of 3D Printable Alkali-Activated Fly-Ash-Based Binders

BibTeX
@article{nair_algh_aror_mehd.2019.LFPMRaECoCBf3P,
  author            = "Sooraj Kumar A. O. Nair and Hussam Alghamdi and Aashay Arora and Iman Mehdipour and Gaurav Sant and Narayanan Neithalath",
  title             = "Linking Fresh Paste Microstructure, Rheology and Extrusion-Characteristics of Cementitious Binders for 3D Printing",
  doi               = "10.1111/jace.16305",
  year              = "2019",
  journal           = "Journal of the American Ceramic Society",
  volume            = "102",
  number            = "7",
  pages             = "3951--3964",
}
Formatted Citation

S. K. A. O. Nair, H. Alghamdi, A. Arora, I. Mehdipour, G. Sant and N. Neithalath, “Linking Fresh Paste Microstructure, Rheology and Extrusion-Characteristics of Cementitious Binders for 3D Printing”, Journal of the American Ceramic Society, vol. 102, no. 7, pp. 3951–3964, 2019, doi: 10.1111/jace.16305.

Nair, Sooraj Kumar A. O., Hussam Alghamdi, Aashay Arora, Iman Mehdipour, Gaurav Sant, and Narayanan Neithalath. “Linking Fresh Paste Microstructure, Rheology and Extrusion-Characteristics of Cementitious Binders for 3D Printing”. Journal of the American Ceramic Society 102, no. 7 (2019): 3951–64. https://doi.org/10.1111/jace.16305.