Effects of Fiber-Volume Fraction, Fiber Length, Water-Binder Ratio, and Nano-Clay Addition on the 3D Printability of Strain-Hardening Cementitious Composites (2023-04)¶
10.1016/j.cemconcomp.2023.105066
Xu Nuoyan,
Journal Article - Cement and Concrete Composites
Abstract
Strain-Hardening Cementitious Composites (SHCC) exhibit superior mechanical performance and show potential in 3D printing applications. However, the formation of fiber agglomerates causes significant challenges during pumping and 3D printing. This study explores the 3D printability of SHCC, using a progressive cavity pump. Various situations are found: Some SHCC mixtures could be 3D printed smoothly with a continuous and nonfractured filament; Some show fractured filaments; Some cause the pump automatically stopped. For these failed extrusion cases, fiber agglomerates are found in the nozzle resulting in fractured filaments, or in the pump screw resulting in automatic cessation of the pump. Effects of fiber volume fraction, fiber length, water-binder ratio, and nanoclay addition on the 3D printability of SHCC are explored. Analysis based on the contact percolation packing fraction of flexible fibers is performed to explore the formation of fiber agglomerates and its impact on 3D printability. The significance of fiber deflection is also highlighted.
¶
28 References
- Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing - Asprone Domenico, Menna Costantino, Bos Freek, Salet Theo et al. (2018-06)
Rethinking Reinforcement for Digital Fabrication with Concrete - Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
Additive Manufacturing of Concrete in Construction:
Potentials and Challenges of 3D Concrete Printing - Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
3D Printing Using Concrete-Extrusion:
A Roadmap for Research - Chen Yu, He Shan, Zhang Yu, Wan Zhi et al. (2021-08)
3D Printing of Calcined-Clay-Limestone-Based Cementitious Materials - Deng Zhicong, Jia Zijian, Zhang Chao, Wang Zhibin et al. (2022-10)
3D Printing Lightweight Aggregate Concrete Prepared with Shell-Packing-Aggregate Method:
Printability, Mechanical Properties and Pore-Structure - Ding Tao, Xiao Jianzhuang, Zou Shuai, Zhou Xinji (2020-08)
Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers - Figueiredo Stefan, Overmeir Anne, Nefs Karsten, Schlangen Erik et al. (2020-07)
Quality-Assessment of Printable Strain-Hardening Cementitious Composites Manufactured in Two Different Printing Facilities - Gaudillière-Jami Nadja, Duballet Romain, Bouyssou Charles, Mallet Alban et al. (2019-02)
Building Applications Using Lost Formworks Obtained Through Large-Scale Additive Manufacturing of Ultra-High-Performance Concrete - Hambach Manuel, Volkmer Dirk (2017-02)
Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste - Jo Jun, Jo Byung, Cho Woohyun, Kim Jung-Hoon (2020-03)
Development of a 3D Printer for Concrete Structures:
Laboratory Testing of Cementitious Materials - Kaliyavaradhan Senthil, Ambily Parukutty, Prem Prabhat, Ghodke Swapnil (2022-08)
Test-Methods for 3D Printable Concrete - Li Victor, Bos Freek, Yu Kequan, McGee Wesley et al. (2020-04)
On the Emergence of 3D Printable Engineered, Strain-Hardening Cementitious Composites - Menna Costantino, Mata-Falcón Jaime, Bos Freek, Vantyghem Gieljan et al. (2020-04)
Opportunities and Challenges for Structural Engineering of Digitally Fabricated Concrete - Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
Extrusion-Based Concrete 3D Printing from a Material Perspective:
A State of the Art Review - Pham Luong, Tran Jonathan, Sanjayan Jay (2020-04)
Steel-Fiber-Reinforced 3D Printed Concrete:
Influence of Fiber Sizes on Mechanical Performance - Qian Ye, Kawashima Shiho (2016-09)
Use of Creep Recovery Protocol to Measure Static Yield-Stress and Structural Rebuilding of Fresh Cement-Pastes - Qian Ye, Schutter Geert (2018-06)
Enhancing Thixotropy of Fresh Cement-Pastes with Nano-Clay in Presence of Polycarboxylate-Ether Superplasticizer (PCE) - Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
3D Printable Concrete:
Mixture-Design and Test-Methods - Soltan Daniel, Li Victor (2018-03)
A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing - Tay Yi, Qian Ye, Tan Ming (2019-05)
Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test - Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
Digital Concrete:
A Review - Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
Large-Scale 3D Printing Concrete Technology:
Current Status and Future Opportunities - Xu Nuoyan, Qian Ye, Yu Jing, Leung Christopher (2022-05)
Tensile Performance of 3D Printed Strain-Hardening Cementitious Composites Considering Material-Parameters, Nozzle-Size and Printing-Pattern - Yang Rijiao, Zeng Qiang, Peng Yu, Wang Hailong et al. (2022-05)
Anomalous Matrix and Inter-Layer Pore-Structure of 3D Printed Fiber-Reinforced Cementitious Composites - Yu Kequan, McGee Wesley, Ng Tsz, Zhu He et al. (2021-02)
3D Printable Engineered Cementitious Composites:
Fresh and Hardened Properties - Zhang Chao, Hou Zeyu, Chen Chun, Zhang Yamei et al. (2019-09)
Design of 3D Printable Concrete Based on the Relationship Between Flowability of Cement-Paste and Optimum Aggregate-Content - Zhu He, Yu Kequan, McGee Wesley, Ng Tsz et al. (2021-11)
Limestone-Calcined-Clay-Cement for Three-Dimensional Printed Engineered Cementitious Composites
41 Citations
- Sun Yan, Du Guoqiang, Deng Xiaowei, Qian Ye (2026-01)
Enhancing Fiber Alignment and Tensile Properties of 3D-Printed Ultra-High Performance Strain-Hardening Cementitious Composites by Nozzle Channel Design - Ding Yao, Liu Yifan, Yang Bo, Liu Jiepeng et al. (2026-01)
Application of Artificial Intelligence Technology in 3D Concrete Printing Quality Inspection and Control:
A State-of-the-Art Review - Cao Jing, Yang Xiaojie, Shi Yaming, Yang Yi et al. (2025-12)
Numerical Analysis of Mechanical Properties of Steel Fiber Composite Cement Mortar Considering Non-Uniformity in 3D Printing. - Wen Kuo-Wei, Su Yen-Fang, Mo Kim, Hung Chung-Chan (2025-12)
Time-Dependent Rheology, Green Strength, and Buildability of 3D-Printed Ultra-High Performance Concrete Incorporating Various Fiber Types and Contents - Tulliani Jean-Marc (2025-11)
Latest Developments in 3D-Printed Engineered Cementitious Composites:
Technologies, Prospects, and Challenges - Sun Yan, Du Guoqiang, Mudasir Maryam (2025-11)
Rheological Investigations of Fresh Fiber-Reinforced Cementitious Composites Using Hydrophobic / Hydrophilic UHMWPE Fibers for 3D Concrete Printing Evaluation - Chen Wenguang, Yu Jie, Ye Junhong, Yu Jiangtao et al. (2025-11)
3D Printed High-Performance Fiber-Reinforced Cementitious Composites:
Fresh, Mechanical, and Microstructural Properties - Wang Yuting, Chen Meng, Zhang Tong, Zhang Mingzhong (2025-10)
Influence of Limestone Calcined Clay on the Mechanical Behaviour of 3D Printed Engineered Cementitious Composites - Teng Fei, Yang Minxin, Yu Jie, Weng Yiwei et al. (2025-10)
Multi-Material 3D Concrete Printing:
Automated Hybrid Reinforcements Using Textile and Strain-Hardening Cementitious Composites - Sun Yan, Mudasir Maryam (2025-09)
3D Printing Performance of Strain-Hardening Cementitious Composites with Different UHMWPE Fibers in Correlation with Rheology - Li Shiping, Sun Yan, Qian Ye, Chen Wujun et al. (2025-08)
Bio-Inspired Bouligand Architectures for Enhanced Flexural Performance in 3D-Printed Strain-Hardening Cementitious Composites (3DP-SHCC) - Si Wen, Carr Liam, Zia Asad, Khan Mehran et al. (2025-08)
Advancing 3D Printable Concrete with Nanoclays:
Rheological and Mechanical Insights for Construction Applications - Liu Shan, Hao Yifei (2025-07)
Designing Sprayable EGC from Constructability to Mechanical Performance - Sun Yan, Du Guoqiang, Deng Xiaowei, Qian Ye (2025-06)
Effects of Nozzle Thickness on the Mechanical Properties of 3D Printable Ultra-High Performance Strain-Hardening Cementitious Composites (UHP-SHCC) - Wang Guihua, Zhou Jiguo, Liu Haoyun, Zhang Jianming (2025-05)
Rheological Properties and Mechanical Durability of 3D-Printed Concrete Based on Low-Field NMR - Rudziewicz Magdalena, Hutyra Adam, Maroszek Marcin, Korniejenko Kinga et al. (2025-04)
3D-Printed Lightweight Foamed Concrete with Dispersed Reinforcement - Du Guoqiang, Sun Yan, Qian Ye (2025-03)
In-Plane and Out-of-Plane Compressive Performance of Bio-Inspired 3D Printed Strain-Hardening Cementitious Composite Lattice Structures - Du Guoqiang, Qian Ye (2025-01)
Enhancing the Fracture and Flexural Behavior of 3D Printed Strain-Hardening Cementitious Composites with Nature-Inspired Single and Double Bouligand Structures - Yu Jie, Xu Fengming, Zhang Hanghua, Ye Junhong et al. (2025-01)
Leveraging Incinerator Bottom Ash for Mitigating Early-Age Shrinkage in 3D Printed Engineered Cementitious Composites - Jin Peng, Hasany Masoud, Kohestanian Mohammad, Mehrali Mehdi (2024-10)
Micro/Nano Additives in 3D Printing Concrete:
Opportunities, Challenges, and Potential Outlook in Construction Applications - Varela Hugo, Tinoco Matheus, Mendoza Reales Oscar, Toledo Filho Romildo et al. (2024-10)
3D Printable Cement-Based Composites Reinforced with Sisal-Fibers:
Rheology, Printability and Hardened Properties - Du Guoqiang, Qian Ye (2024-10)
Bio-Inspired Innovations in 3D Concrete Printing:
Structures, Materials and Applications - Althoey Fadi, Zaid Osama, Ahmed Bilal, Elhadi Khaled (2024-10)
Impact of Double Hooked Steel-Fibers and Nano-Kaolin-Clay on Fresh Properties of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete - Du Guoqiang, Sun Yan, Qian Ye (2024-10)
Nature-Inspired Approach for Enhancing the Fracture Performance of 3D Printed Strain-Hardening Cementitious Composites (3DP-SHCC) - Varela Hugo, Barluenga Gonzalo, Sonebi Mohammed (2024-09)
Evaluation of Basalt-Fibers and Nano-Clays to Enhance Extrudability and Buildability of 3D Printing Mortars - Singh Pranay, Gadde Venkateswara, Zhou Chi, Okumus Pinar et al. (2024-09)
Development of 3D Printable Strain-Hardening Cementitious Composites for Bridge-Related Applications - Du Guoqiang, Sun Yan, Qian Ye (2024-08)
3D Printed Strain-Hardening Cementitious Composites (3DP-SHCC) Reticulated Shell Roof Inspired by the Water Spider - Yang Rijiao, Xu Chengji, Lan Yan, Qiu Yue et al. (2024-08)
Near Pixel-Level Characterisation of Micro-Fibers in 3D Printed Cementitious Composites and Migration Mechanisms Using a Novel Iterative Method - Liu Zhenbang, Li Mingyang, Wang Xiangyu, Wang Sizhe et al. (2024-07)
Axial Performances of the Steel-Rebar-Reinforced Column Confined by the Steel-Cable-Reinforced 3D Concrete Printing Permanent Formwork - Qiu Minghong, Qian Ye, Sun Yan, Leung Christopher (2024-07)
Flexural Performance of Concrete Beams via 3D Printing Stay-in-Place Formwork Followed by Casting of Normal Concrete - Asghari Y., Mohammadyan-Yasouj S., Petrů M., Ghandvar H. et al. (2024-07)
3D Printing and Implementation of Engineered Cementitious Composites:
A Review - Teng Fei, Ye Junhong, Yu Jie, Li Heng et al. (2024-07)
Development of Strain-Hardening Cementitious Composites (SHCC) As Bonding Materials to Enhance Inter-Layer and Flexural Performance of 3D Printed Concrete - Wang Yuting, Chen Meng, Zhang Tong, Zhang Mingzhong (2024-07)
Hardening Properties and Microstructure of 3D Printed Engineered Cementitious Composites Based on Limestone-Calcined-Clay-Cement - Duan Jiaqi, Sun Shouzheng, Chi Shengfeng, Hu Chunyou et al. (2024-06)
Effect of Process Parameters on Forming Quality and Flexural Strength of Continuous-Fiber-Reinforced Cement-Based 3D Printed Composites - Du Guoqiang, Qian Ye (2024-05)
Effects of Printing-Patterns and Loading-Directions on Fracture Behavior of 3D Printed Strain-Hardening Cementitious Composites - Qiu Minghong, Qian Ye, Dai Jian-Guo (2024-05)
Enhancing the Flexural Performance of Concrete Beams with 3D Printed UHP-SHCC Permanent Formwork via Graded Fiber Volume Fraction - Du Guoqiang, Sun Yan, Qian Ye (2024-03)
Flexural Performance of Nature-Inspired 3D Printed Strain-Hardening Cementitious Composites with Bouligand Structures - Pi Yilin, Lu Cong, Yao Yiming, Li Baoshan (2024-01)
A Rheological-Based Printability-Assessment Method for 3D Printing Engineered Cementitious Composites Considering Fiber-Dispersion - Dai Pengfei, Lyu Qifeng, Zong Meirong, Zhu Pinghua (2024-01)
Effect of Waste-Plastic-Fibers on the Printability and Mechanical Properties of 3D Printed Cement Mortar - Overmeir Anne, Šavija Branko, Bos Freek, Schlangen Erik (2023-09)
Effects of 3D Concrete Printing Phases on the Mechanical Performance of Printable Strain-Hardening Cementitious Composites - Zhang Yi, Zhu Yanmei, Ren Qiang, He Bei et al. (2023-08)
Comparison of Printability and Mechanical Properties of Rigid and Flexible Fiber-Reinforced 3D Printed Cement-Based Materials
BibTeX
@article{xu_qian.2023.EoFVFFLWBRaNCAot3PoSHCC,
author = "Nuoyan Xu and Ye Qian",
title = "Effects of Fiber-Volume Fraction, Fiber Length, Water-Binder Ratio, and Nano-Clay Addition on the 3D Printability of Strain-Hardening Cementitious Composites",
doi = "10.1016/j.cemconcomp.2023.105066",
year = "2023",
journal = "Cement and Concrete Composites",
}
Formatted Citation
N. Xu and Y. Qian, “Effects of Fiber-Volume Fraction, Fiber Length, Water-Binder Ratio, and Nano-Clay Addition on the 3D Printability of Strain-Hardening Cementitious Composites”, Cement and Concrete Composites, 2023, doi: 10.1016/j.cemconcomp.2023.105066.
Xu, Nuoyan, and Ye Qian. “Effects of Fiber-Volume Fraction, Fiber Length, Water-Binder Ratio, and Nano-Clay Addition on the 3D Printability of Strain-Hardening Cementitious Composites”. Cement and Concrete Composites, 2023. https://doi.org/10.1016/j.cemconcomp.2023.105066.