Skip to content

Effects of Different Types of Fibers on Fresh and Hardened Properties of Cement and Geopolymer-Based 3D Printed Mixtures (2023-04)

A Review

10.3390/buildings13040945

Ramezani Amir, Modaresi Shahriar, Dashti Pooria, Givkashi Mohammad,  Moodi Faramarz, Ramezanianpour Ali
Journal Article - Buildings, Vol. 13, Iss. 4

Abstract

Three-dimensional printed concrete (3DPC) is emerging as a new building material. Due to automation, this method dramatically decreases construction time and material wastage while increasing construction quality. Despite the mentioned benefits, this technology faces various issues. Among these issues, the inability to use steel bars for reinforcement and early age cracking because of the low water-to-binder ratio and high amount of binders can be mentioned. In this regard, due to the superior properties of fiber-reinforced concrete (FRC), such as high first crack strength, tensile strength, improvement ductility, and resistance to shrinkage cracking, one of the effective ways to reinforce the mixture of the 3DPC is to use fibers instead of steel bars. Regarding the mentioned issues, the effects of different fibers, such as steel, carbon fibers and so on, on fresh and mechanical properties and dimensional stabilities of hardened concrete have been reviewed. It is predicted that using fibers, especially hybrid fibers, not only covers the deficiencies of initial cracking of 3DPC, but also can be used instead of steel bars; therefore, this material can play a pivotal role in the construction industry’s future.

57 References

  1. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2020-10)
    Development of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete for Digital Construction
  2. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
    Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing
  3. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Khayat Kamal et al. (2021-10)
    Digital Fabrication of Eco-Friendly Ultra-High-Performance Fiber-Reinforced Concrete
  4. Bos Freek, Ahmed Zeeshan, Jutinov Evgeniy, Salet Theo (2017-11)
    Experimental Exploration of Metal-Cable as Reinforcement in 3D Printed Concrete
  5. Bos Freek, Bosco Emanuela, Salet Theo (2018-11)
    Ductility of 3D Printed Concrete Reinforced with Short Straight Steel-Fibers
  6. Cai Jingming, Sheng Zhaoliang, Wang Xiaoyi, Fang Yizhi et al. (2021-12)
    Effect of Reinforcement-Configurations on the Flexural Behaviors of 3D Printed Fiber-Reinforced Cementitious Composite Beams
  7. Chen Mingxu, Yang Lei, Zheng Yan, Li Laibo et al. (2021-01)
    Rheological Behaviors and Structure Build-Up of 3D Printed Polypropylene- and Polyvinyl-Alcohol-Fiber-Reinforced Calcium-Sulphoaluminate-Cement Composites
  8. Chu Shaohua, Li Leo, Kwan Albert (2020-09)
    Development of Extrudable High-Strength Fiber-Reinforced Concrete Incorporating Nano-Calcium-Carbonate
  9. Ding Tao, Xiao Jianzhuang, Zou Shuai, Yu Jiangtao (2021-03)
    Flexural Properties of 3D Printed Fiber-Reinforced Concrete with Recycled Sand
  10. Ding Tao, Xiao Jianzhuang, Zou Shuai, Zhou Xinji (2020-08)
    Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers
  11. Federowicz Karol, Kaszyńska Maria, Zieliński Adam, Hoffmann Marcin (2020-06)
    Effect of Curing Methods on Shrinkage Development in 3D Printed Concrete
  12. Gebhard Lukas, Mata-Falcón Jaime, Anton Ana-Maria, Burger Joris et al. (2020-07)
    Aligned Inter-Layer Fiber-Reinforcement and Post-Tensioning as a Reinforcement-Strategy for Digital Fabrication
  13. Hambach Manuel, Rutzen Matthias, Volkmer Dirk (2019-02)
    Properties of 3D-Printed Fiber-Reinforced Portland Cement-Paste
  14. Hambach Manuel, Volkmer Dirk (2017-02)
    Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste
  15. Heever Marchant, Plessis Anton, Kruger Jacques, Zijl Gideon (2022-01)
    Evaluating the Effects of Porosity on the Mechanical Properties of Extrusion-Based 3D Printed Concrete
  16. Jin Yuan, Zhou Xiaolong, Chen Mingxu, Zhao Zhihui et al. (2021-11)
    High-Toughness 3D Printed White Portland-Cement-Based Materials with Glass-Fiber-Textile
  17. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  18. Khoshnevis Behrokh (2003-11)
    Automated Construction by Contour Crafting:
    Related Robotics and Information Technologies
  19. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  20. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  21. Lesovik Valeriy, Fediuk Roman, Amran Mugahed, Alaskhanov Arbi et al. (2021-12)
    3D Printed Mortars with Combined Steel and Polypropylene Fibers
  22. Li Leo, Xiao Bofeng, Fang Z., Xiong Z. et al. (2020-11)
    Feasibility of Glass-Basalt Fiber-Reinforced Seawater Coral Sand Mortar for 3D Printing
  23. Lim Jian, Panda Biranchi, Pham Quang-Cuong (2018-05)
    Improving Flexural Characteristics of 3D Printed Geopolymer Composites with In-Process Steel-Cable-Reinforcement
  24. Lim Jian, Weng Yiwei, Li Mingyang (2018-05)
    Effect of Fiber-Reinforced Polymer on Mechanical Performance of 3D Printed Cementitious Material
  25. Lowke Dirk, Dini Enrico, Perrot Arnaud, Weger Daniel et al. (2018-07)
    Particle-Bed 3D Printing in Concrete Construction:
    Possibilities and Challenges
  26. Ma Guowei, Li Zhijian, Wang Li, Bai Gang (2018-10)
    Micro-Cable-Reinforced Geopolymer Composite for Extrusion-Based 3D Printing
  27. Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
    Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing
  28. Marchment Taylor, Sanjayan Jay (2019-10)
    Mesh Reinforcing Method for 3D Concrete Printing
  29. Mechtcherine Viktor, Nerella Venkatesh, Kasten Knut (2013-12)
    Testing Pumpability of Concrete Using Sliding-Pipe Rheometer
  30. Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2022-04)
    A Plastic Shrinkage Cracking-Risk-Model for 3D Printed Concrete Exposed to Different Environments
  31. Nematollahi Behzad, Vijay Praful, Sanjayan Jay, Nazari Ali et al. (2018-11)
    Effect of Polypropylene Fiber Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction
  32. Nguyen Vuong, Panda Biranchi, Zhang Guomin, Nguyen-Xuan Hung et al. (2021-01)
    Digital Design Computing and Modelling for 3D Concrete Printing
  33. Panda Biranchi, Lim Jian, Mohamed Nisar, Paul Suvash et al. (2017-07)
    Automation of Robotic Concrete Printing Using Feedback-Control-System
  34. Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
    Additive Manufacturing of Geopolymer for Sustainable Built Environment
  35. Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
    Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material
  36. Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
    Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing
  37. Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
    Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction
  38. Pegna Joseph (1997-02)
    Exploratory Investigation of Solid Freeform Construction
  39. Pham Luong, Tran Jonathan, Sanjayan Jay (2020-04)
    Steel-Fiber-Reinforced 3D Printed Concrete:
    Influence of Fiber Sizes on Mechanical Performance
  40. Rutzen Matthias, Schulz Michael, Moosburger-Will Judith, Lauff Philipp et al. (2021-11)
    3D Printing as an Automated Manufacturing Method for a Carbon-Fiber-Reinforced Cementitious Composite with Outstanding Flexural Strength (105 N/mm²)
  41. Scheurer Martin, Quenzel Philipp, Nölke Peter, Reuter‐Schniete Jonas et al. (2021-07)
    Investigating the Feasibility of Using Carbon Fiber Tapes as Reinforcement for 3D Concrete Printing
  42. Shakor Pshtiwan, Nejadi Shami, Paul Gavin, Malek Sardar (2019-01)
    Review of Emerging Additive Manufacturing Technologies in 3D Printing of Cementitious Materials in the Construction Industry
  43. Singh Amardeep, Liu Qiong, Xiao Jianzhuang, Lyu Qifeng (2022-02)
    Mechanical and Macrostructural Properties of 3D Printed Concrete Dosed with Steel-Fibers under Different Loading-Direction
  44. Souza Marcelo, Ferreira Igor, Moraes Elisângela, Senff Luciano et al. (2020-09)
    3D Printed Concrete for Large-Scale Buildings:
    An Overview of Rheology, Printing Parameters, Chemical Admixtures, Reinforcements, and Economic and Environmental Prospects
  45. Sun Junbo, Aslani Farhad, Lu Jenny, Wang Lining et al. (2021-06)
    Fiber-Reinforced Lightweight Engineered Cementitious Composites for 3D Concrete Printing
  46. Sun Xiaoyan, Gao Chao, Wang Hailong (2020-10)
    Bond-Performance Between BFRP-Bars and 3D Printed Concrete
  47. Sun Xiaoyan, Zhou Jiawei, Wang Qun, Shi Jiangpeng et al. (2021-11)
    PVA-Fiber-Reinforced High-Strength Cementitious Composite for 3D Printing:
    Mechanical Properties and Durability
  48. Tran Mien, Cu Yen, Le Chau (2021-10)
    Rheology and Shrinkage of Concrete Using Polypropylene-Fiber for 3D Concrete Printing
  49. Xiao Jianzhuang, Han Nv, Zhang Lihai, Zou Shuai (2021-05)
    Mechanical and Microstructural Evolution of 3D Printed Concrete with Polyethylene-Fiber and Recycled Sand at Elevated Temperatures
  50. Xiao Jianzhuang, Zou Shuai, Ding Tao, Duan Zhenhua et al. (2021-08)
    Fiber-Reinforced Mortar with 100% Recycled Fine Aggregates:
    A Cleaner Perspective on 3D Printing
  51. Xu Jie, Ding Lieyun, Love Peter (2017-01)
    Digital Reproduction of Historical Building Ornamental Components:
    From 3D Scanning to 3D Printing
  52. Yang Yekai, Wu Chengqing, Liu Zhongxian, Li Jun et al. (2022-02)
    Characteristics of 3D Printing Ultra-High-Performance Fiber-Reinforced Concrete Under Impact Loading
  53. Yang Yekai, Wu Chengqing, Liu Zhongxian, Wang Hailiang et al. (2021-10)
    Mechanical Anisotropy of Ultra-High-Performance Fiber-Reinforced Concrete for 3D Printing
  54. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
    Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete
  55. Yu Kequan, McGee Wesley, Ng Tsz, Zhu He et al. (2021-02)
    3D Printable Engineered Cementitious Composites:
    Fresh and Hardened Properties
  56. Zhang Yifan, Aslani Farhad (2021-08)
    Development of Fiber-Reinforced Engineered Cementitious Composite Using Polyvinyl-Alcohol-Fiber and Activated Carbon-Powder for 3D Concrete Printing
  57. Zhou Jiehang, Lai Jianzhong, Du Longyu, Wu Kai et al. (2021-12)
    Effect of Directionally Distributed Steel-Fiber on Static and Dynamic Properties of 3D Printed Cementitious Composite

21 Citations

  1. Hasan Md, Xu Jie, Uddin Md (2025-11)
    A Critical Review of 3D Printed Fiber-Based Geopolymer Concrete:
    Fresh Properties, Mechanical Performance, and Current Limitations
  2. Givkashi Mohammad (2025-11)
    Durability of 3D Printed Concrete Containing Air-Entraining Agent:
    Evaluating the Importance of Carbonation Resistance
  3. Delavar Mohammad, Aslani Farhad, Sercombe Tim (2025-10)
    Cracking Behaviour in 3D Concrete Printed Fiber-Reinforced Cementitious Composites:
    A Review
  4. Liu Ruiying, Xiong Zhongming, Chen Xuan, Jia Qiong et al. (2025-09)
    Industrial Waste in 3D Printed Concrete:
    A Mechanistic Review on Rheological Control and Printability
  5. Ahadi Bahram, Valiente López María (2025-05)
    Zigzag Reinforcement Method for 3D Concrete Printing
  6. Jaji Mustapha, Babafemi Adewumi, Zijl Gideon (2025-05)
    Mechanical Performance of Extrusion-Based Two-Part 3D-Printed Geopolymer Concrete:
    A Review of Advances in Laboratory and Real-Scale Construction Projects
  7. Rudziewicz Magdalena, Hutyra Adam, Maroszek Marcin, Korniejenko Kinga et al. (2025-04)
    3D-Printed Lightweight Foamed Concrete with Dispersed Reinforcement
  8. Givkashi Mohammad, Moodi Faramarz, Ramezanianpour Amir (2025-03)
    Investigating Shrinkage and Mechanical Properties of 3D Printed Concretes Under Different Curing Conditions
  9. Givkashi Mohammad, Moodi Faramarz, Ramezanianpour Amir (2025-02)
    Effect of Air-Entraining Agent on Hardened Properties of 3D Printed Concrete with Emphasis on Permeability and Air Void Structure
  10. Li Yeou-Fong, Liang Yu-Fang, Syu Jin-Yuan, Huang Chi-Hong et al. (2024-12)
    Static and Dynamic Mechanical Characteristics of 3D Printed Anisotropic Basalt Fiber-Reinforced Cement Mortar
  11. Li Ben, Li Kaihang, Lyu Xuetao, Zhao Canhao et al. (2024-12)
    Microscopic Mechanism and Predicting Calculation on Mechanical Properties of Basalt-Fiber-Modified 3D Printing Cement-Based Materials
  12. Yasin Mazhar, Siddiqi Zahid, Ur Rehman Atteq, Noshin Sadaf et al. (2024-11)
    Innovative Early-Age Mechanical Properties of 3D Printable Mortar Enhanced with SBR-Latex and Kaolin
  13. Aldabergenova Gaziza, Jexembayeva Assel, Konkanov Marat, Kirgizbayev Akpan et al. (2024-09)
    The Efficient Waste-Based Fine-Grained Fiber Concretes for 3D Printing
  14. Givkashi Mohammad, Moodi Faramarz, Ramezanianpour Amir (2024-08)
    Effect of Pumping Process on the Properties of 3D Printed Concrete Containing Air-Entraining-Agent
  15. Aghaee Kamran, Li Linfei, Roshan Alireza, Namakiaraghi Parsa (2024-08)
    Additive Manufacturing Evolution in Construction:
    From Individual Terrestrial to Collective, Aerial, and Extraterrestrial Applications
  16. Givkashi Mohammad, Tohidloo Mohammad (2024-07)
    The Effect of Freeze-Thaw-Cycles and Sulfuric-Acid-Attack Separately on the Compressive Strength and Microstructure of 3D Printed Air-Entrained Concrete
  17. Krishna R., Rehman Asif, Mishra Jyotirmoy, Saha Suman et al. (2024-06)
    Additive Manufacturing of Geopolymer Composites for Sustainable Construction:
    Critical Factors, Advancements, Challenges, and Future Directions
  18. Rahman Mahfuzur, Rawat Sanket, Yang Chunhui, Mahil Ahmed et al. (2024-05)
    A Comprehensive Review on Fresh and Rheological Properties of 3D Printable Cementitious Composites
  19. Gamage Kumari, Fawzia Sabrina, Zahra Tatheer, Teixeira Muge et al. (2024-02)
    Advancement in Sustainable 3D Concrete Printing:
    A Review on Materials, Challenges, and Current Progress in Australia
  20. Buson Márcio, Varum Humberto, Rezende Marco (2024-01)
    First Impressions on Three-Dimensional Printing with Earth-Based Mortar at the Faculty of Engineering of the University of Porto
  21. Alyami Mana, Khan Majid, Javed Muhammad, Ali Mujahid et al. (2023-12)
    Application of Metaheuristic Optimization Algorithms in Predicting the Compressive Strength of 3D Printed Fiber-Reinforced Concrete

BibTeX
@article{rame_moda_dash_givk.2023.EoDToFoFaHPoCaGB3PM,
  author            = "Amir Ramezani and Shahriar Modaresi and Pooria Dashti and Mohammad Rasul Givkashi and Faramarz Moodi and Ali Akbar Ramezanianpour",
  title             = "Effects of Different Types of Fibers on Fresh and Hardened Properties of Cement and Geopolymer-Based 3D Printed Mixtures: A Review",
  doi               = "10.3390/buildings13040945",
  year              = "2023",
  journal           = "Buildings",
  volume            = "13",
  number            = "4",
}
Formatted Citation

A. Ramezani, S. Modaresi, P. Dashti, M. R. Givkashi, F. Moodi and A. A. Ramezanianpour, “Effects of Different Types of Fibers on Fresh and Hardened Properties of Cement and Geopolymer-Based 3D Printed Mixtures: A Review”, Buildings, vol. 13, no. 4, 2023, doi: 10.3390/buildings13040945.

Ramezani, Amir, Shahriar Modaresi, Pooria Dashti, Mohammad Rasul Givkashi, Faramarz Moodi, and Ali Akbar Ramezanianpour. “Effects of Different Types of Fibers on Fresh and Hardened Properties of Cement and Geopolymer-Based 3D Printed Mixtures: A Review”. Buildings 13, no. 4 (2023). https://doi.org/10.3390/buildings13040945.