Skip to content

Performance Requirements and Optimum Mix Proportion of High-Volume Fly-Ash 3D Printable Concrete (2024-07)

10.3390/buildings14072069

 Şahin Hatice,  Mardani Ali, Mardani Naz
Journal Article - Buildings, Vol. 14, Iss. 7, No. 2069

Abstract

In this study, a procedure for mixture design was proposed with the aim of meeting the requirements of extrudability, buildability, and shape stability in 3D printable concrete. Optimum water/binder ratio, sand/binder ratio, binder type, utilization ratio, aggregate particle distribution and quantity, and type and utilization ratio of chemical admixtures were determined for 3D printable concrete in terms of print quality and shape stability criteria. A total of 32 different mixtures were produced. It was determined that mixtures produced using a binder content with approximately 40% fly ash, a w/b ratio of 0.35, and aggregates with Dmax of 1 mm exhibit acceptable characteristics. Investigations were also conducted into the thixotropic behavior, rheological characteristics, and mechanical properties of the mixes that were deemed acceptable. As a result, it was determined that the increase in the amount of fly ash usage positively affected the buildability of the printed layers. Additionally, the dynamic yield stress ranging from 114 to 204 Pa, viscosity ranging from 22 to 43 Pa.s, and structural build-up value ranges suitable for the production of 3D printable concrete mixtures were determined.

55 References

  1. Alghamdi Hussam, Nair Sooraj, Neithalath Narayanan (2019-02)
    Insights into Material-Design, Extrusion Rheology, and Properties of 3D Printable Alkali-Activated Fly-Ash-Based Binders
  2. Antoni Antoni, Adi N., Kurniawan M., Agraputra A. et al. (2023-06)
    The Influence of Viscosity-Modifying Agent and Calcium-Carbonate on 3D Printing Mortar Characteristics
  3. Bhattacherjee Shantanu, Basavaraj Anusha, Rahul Attupurathu, Santhanam Manu et al. (2021-06)
    Sustainable Materials for 3D Concrete Printing
  4. Chen Yu, Figueiredo Stefan, Yalçınkaya Çağlar, Çopuroğlu Oğuzhan et al. (2019-04)
    The Effect of Viscosity-Modifying Admixture on the Extrudability of Limestone and Calcined-Clay-Based Cementitious Material for Extrusion-Based 3D Concrete Printing
  5. Chen Yu, Li Zhenming, Figueiredo Stefan, Çopuroğlu Oğuzhan et al. (2019-04)
    Limestone and Calcined-Clay-Based Sustainable Cementitious Materials for 3D Concrete Printing:
    A Fundamental Study of Extrudability and Early-Age Strength Development
  6. Chen Mingxu, Li Laibo, Zheng Yan, Zhao Piqi et al. (2018-09)
    Rheological and Mechanical Properties of Admixtures-Modified 3D Printing Sulphoaluminate Cementitious Materials
  7. Cicione Antonio, Kruger Jacques, Walls Richard, Zijl Gideon (2020-05)
    An Experimental Study of the Behavior of 3D Printed Concrete at Elevated Temperatures
  8. Dey Dhrutiman, Panda Biranchi (2022-10)
    An Experimental Study of Thermal Performance of 3D Printed Concrete Slabs
  9. Han Yilong, Yang Zhihan, Ding Tao, Xiao Jianzhuang (2020-08)
    Environmental and Economic Assessment on 3D Printed Buildings with Recycled Concrete
  10. Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
    A Review of 3D Printed Concrete:
    Performance-Requirements, Testing Measurements and Mix-Design
  11. Ibrahim Kamoru, Zijl Gideon, Babafemi Adewumi (2023-10)
    Comparative Studies of LC³- and Fly-Ash-Based Blended Binders in Fiber-Reinforced Printed Concrete:
    Rheological and Quasi-Static Mechanical Characteristics
  12. Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2020-01)
    Yield-Stress-Criteria to Assess the Buildability of 3D Concrete Printing
  13. Jayathilakage Roshan, Sanjayan Jay, Rajeev Pathmanathan (2020-07)
    Characterizing Extrudability for 3D Concrete Printing Using Discrete Element Simulations
  14. Kaliyavaradhan Senthil, Ambily Parukutty, Prem Prabhat, Ghodke Swapnil (2022-08)
    Test-Methods for 3D Printable Concrete
  15. Kazemian Ali, Yuan Xiao, Meier Ryan, Cochran Evan et al. (2017-06)
    Construction-Scale 3D Printing:
    Shape Stability of Fresh Printing Concrete
  16. Khalil Noura, Aouad Georges, Cheikh Khadija, Rémond Sébastien (2017-09)
    Use of Calcium-Sulfoaluminate-Cements for Setting-Control of 3D Printing Mortars
  17. Lee Jin, Kim Jae (2022-06)
    Matric-Suction and Its Effect on the Shape Stability of 3D Printed Concrete
  18. Luhar Salmabanu, Suntharalingam Thadshajini, Navaratnam Satheeskumar, Luhar Ismail et al. (2020-12)
    Sustainable and Renewable Bio-Based Natural Fibers and Its Application for 3D Printed Concrete:
    A Review
  19. Ma Guowei, Wang Li (2017-08)
    A Critical Review of Preparation Design and Workability Measurement of Concrete Material for Large-Scale 3D Printing
  20. Marchon Delphine, Kawashima Shiho, Bessaies-Bey Hela, Mantellato Sara et al. (2018-05)
    Hydration- and Rheology-Control of Concrete for Digital Fabrication:
    Potential Admixtures and Cement-Chemistry
  21. Marchment Taylor, Sanjayan Jay, Xia Ming (2019-03)
    Method of Enhancing Inter-Layer Bond Strength in Construction-Scale 3D Printing with Mortar by Effective Bond Area Amplification
  22. Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
    Extrusion-Based Additive Manufacturing with Cement-Based Materials:
    Production Steps, Processes, and Their Underlying Physics
  23. Moeini Mohammad, Hosseinpoor Masoud, Yahia Ammar (2020-05)
    Effectiveness of the Rheometric Methods to Evaluate the Build-Up of Cementitious Mortars Used for 3D Printing
  24. Mohamed Ibrahim, Senthil Kumar (2024-05)
    3D Printed Concrete Using Portland-Pozzolana-Cement:
    Fly-Ash-Based
  25. Nerella Venkatesh, Krause Martin, Mechtcherine Viktor (2019-11)
    Direct Printing-Test for Buildability of 3D Printable Concrete Considering Economic Viability
  26. Nodehi Mehrab, Aguayo Federico, Nodehi Shahab, Gholampour Aliakbar et al. (2022-07)
    Durability Properties of 3D Printed Concrete
  27. Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
    Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction
  28. Rahul Attupurathu, Santhanam Manu (2020-02)
    Evaluating the Printability of Concretes Containing Lightweight Coarse Aggregates
  29. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
    3D Printable Concrete:
    Mixture-Design and Test-Methods
  30. Robayo-Salazar Rafael, Gutiérrez Ruby, Villaquirán-Caicedo Mónica, Delvasto Arjona Silvio (2022-12)
    3D Printing with Cementitious Materials:
    Challenges and Opportunities for the Construction Sector
  31. Şahin Hatice, Mardani Ali (2021-12)
    Assessment of Materials, Design Parameters and Some Properties of 3D Printing Concrete Mixtures:
    A State of the Art Review
  32. Şahin Hatice, Mardani Ali (2023-10)
    How Does Rheological Behavior Affect the Inter-Layer Bonding Strength of 3DPC Mixtures?
  33. Şahin Hatice, Mardani Ali, Beytekin Hatice (2024-02)
    Effect of Silica-Fume Utilization on Structural Build-Up, Mechanical and Dimensional Stability Performance of Fiber-Reinforced 3D Printable Concrete
  34. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  35. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2021-06)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete:
    Correction
  36. Shakor Pshtiwan, Nejadi Shami, Sutjipto Sheila, Paul Gavin et al. (2020-01)
    Effects of Deposition-Velocity in the Presence-Absence of E6-Glass-Fiber on Extrusion-Based 3D Printed Mortar
  37. Skibicki Szymon, Federowicz Karol, Hoffmann Marcin, Chougan Mehdi et al. (2024-05)
    Potential of Reusing 3D Printed Concrete (3DPC) Fine Recycled Aggregates as a Strategy Towards Decreasing Cement Content in 3DPC
  38. Sukontasukkul Piti, Panklum Kasidet, Maho Buchit, Banthia Nemkumar et al. (2021-12)
    Effect of Synthetic Micro-Fiber and Viscosity-Modifying-Agent on Layer Deformation, Viscosity, and Open-Time of Cement Mortar for 3D Printing Application
  39. Suntharalingam Thadshajini, Nagaratnam Brabha, Poologanathan Keerthan, Hackney Phil et al. (2020-07)
    Effect of Polypropylene-Fibers on the Mechanical Properties of Extrudable Cementitious Material
  40. Tao Yaxin, Lesage Karel, Tittelboom Kim, Yuan Yong et al. (2020-07)
    Effect of Limestone-Powder Substitution on Fresh and Hardened Properties of 3D Printable Mortar
  41. Taqa Ala, Mohsen Mohamed, Aburumman Mervat, Naji Khalid et al. (2024-05)
    Nano-Fly-Ash and Clay for 3D Printing Concrete Buildings:
    A Fundamental Study of Rheological, Mechanical and Microstructural Properties
  42. Wang Weiqiang, Konstantinidis Nikolaos, Austin Simon, Buswell Richard et al. (2020-07)
    Flexural Behavior of AR-Glass-Textile-Reinforced 3D Printed Concrete Beams
  43. Wu Yiwen, Liu Chao, Liu Huawei, Zhang Zhenzi et al. (2021-07)
    Study on the Rheology and Buildability of 3D Printed Concrete with Recycled Coarse Aggregates
  44. Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
    Large-Scale 3D Printing Concrete Technology:
    Current Status and Future Opportunities
  45. Xu Jie, Ding Lieyun, Cai Lixiong, Zhang Lichao et al. (2019-04)
    Volume-Forming 3D Concrete Printing Using a Variable-Size Square Nozzle
  46. Yalçınkaya Çağlar (2022-03)
    Influence of Hydroxypropyl Methylcellulose Dosage on the Mechanical Properties of 3D Printable Mortars with and without Fiber-Reinforcement
  47. Yang Huashan, Che Yujun (2022-01)
    Recycling of Aggregate Micro-Fines as a Partial Replacement for Fly-Ash in 3D Printing Cementitious Materials
  48. Yang Liming, Sepasgozar Samad, Shirowzhan Sara, Kashani Alireza et al. (2022-12)
    Nozzle Criteria for Enhancing Extrudability, Buildability and Inter-Layer Bonding in 3D Printing Concrete
  49. Yao Hao, Xie Zonglin, Li Zemin, Huang Chuhan et al. (2021-11)
    The Relationship Between the Rheological Behavior and Inter-Layer Bonding Properties of 3D Printing Cementitious Materials with the Addition of Attapulgite
  50. Yuan Qiang, Zhou Dajun, Huang Hai, Peng Jianwei et al. (2020-06)
    Structural Build-Up, Hydration and Strength Development of Cement-Based Materials with Accelerators
  51. Zaid Osama, Ouni Mohamed (2024-04)
    Advancements in 3D Printing of Cementitious Materials:
    A Review of Mineral Additives, Properties, and Systematic Developments
  52. Zhang Chao, Hou Zeyu, Chen Chun, Zhang Yamei et al. (2019-09)
    Design of 3D Printable Concrete Based on the Relationship Between Flowability of Cement-Paste and Optimum Aggregate-Content
  53. Zhang Yi, Jiang Zhengwu, Zhu Yanmei, Zhang Jie et al. (2020-10)
    Effects of Redispersible Polymer-Powders on the Structural Build-Up of 3D Printing Cement Paste with and without Hydroxypropyl-Methylcellulose
  54. Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
    Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete
  55. Zhi Peng, Wu Yuching, Yang Qianfan, Kong Xiangrui et al. (2022-03)
    Effect of Spiral Blade Geometry on 3D Printed Concrete Rheological Properties and Extrudability Using Discrete Event Modeling

8 Citations

  1. Tushar Fazlul, Hasan Mehedi, Hasan Kamrul, Mawa Jannatul et al. (2026-01)
    Factors Affecting Flowability and Rheological Behavior of 3D Printed Concrete:
    A Comprehensive Review
  2. Liu Mei, Wang Huai, Li Yang, Li Xiulin et al. (2025-12)
    Post-Fire Mechanical Properties of 3D Printed Concrete Under Different Cooling Methods
  3. Akgümüş Fatih, Şahin Hatice, Mardani Ali (2025-10)
    Investigation of Waste Steel Fiber Usage Rate and Length Change on Some Fresh State Properties of 3D Printable Concrete Mixtures
  4. Maroszek Marcin, Rudziewicz Magdalena, Hebda Marek (2025-09)
    Recycled Components in 3D Concrete Printing Mixes:
    A Review
  5. Anop Darya, Sadenova Marzhan, Beisekenov Nail, Rudenko Olga et al. (2025-07)
    Additive Manufacturing as an Alternative to Core Sampling in Concrete Strength Assessment
  6. Nieświec Martyna, Chajec Adrian, Šavija Branko (2025-05)
    Effect of Ground Copper Slag on the Fresh Properties of 3d Printed Cementitious Composites
  7. Şahin Hatice, Kaya Yahya, Akgümüş Fatih, Mardani Naz et al. (2025-03)
    Degradation of Mechanical Properties of 3D Fiber Reinforced Printed Concrete Mixtures Exposed to Elevated Temperatures
  8. Bao Ta, Yeakleang Muy, Abdelouhab Sandra, Courard Luc (2024-10)
    Testing Mortars for 3D Printing:
    Correlation with Rheological Behavior

BibTeX
@article{sahi_mard_mard.2024.PRaOMPoHVFA3PC,
  author            = "Hatice Gizem Şahin and Ali Mardani and Naz Mardani",
  title             = "Performance Requirements and Optimum Mix Proportion of High-Volume Fly-Ash 3D Printable Concrete",
  doi               = "10.3390/buildings14072069",
  year              = "2024",
  journal           = "Buildings",
  volume            = "14",
  number            = "7",
  pages             = "2069",
}
Formatted Citation

H. G. Şahin, A. Mardani and N. Mardani, “Performance Requirements and Optimum Mix Proportion of High-Volume Fly-Ash 3D Printable Concrete”, Buildings, vol. 14, no. 7, p. 2069, 2024, doi: 10.3390/buildings14072069.

Şahin, Hatice Gizem, Ali Mardani, and Naz Mardani. “Performance Requirements and Optimum Mix Proportion of High-Volume Fly-Ash 3D Printable Concrete”. Buildings 14, no. 7 (2024): 2069. https://doi.org/10.3390/buildings14072069.