Skip to content

Tough Double-Bouligand Architected Concrete Enabled by Robotic Additive Manufacturing (2024-08)

10.1038/s41467-024-51640-y

 Prihar Arjun,  Gupta Shashank, Esmaeeli Hadi,  Moini Mohamadreza
Journal Article - Nature Communications, Vol. 15, Iss. 1

Abstract

Nature has developed numerous design motifs by arrangingmodest materials into complex architectures. The damage-tolerant, double-bouligand architecture found in the coelacanth fish scale is comprised of collagen fibrils helically arranged in a bilayer manner. Here, we exploit the toughening mechanisms ofdouble-bouligand designs by engineering architected concrete using a large-scale two-component robotic additive manufacturing process. The process enables intricate fabrication of the architected concrete components at large-scale. The double-bouligand designs are benchmarked against bouligand and conventional rectilinear counterparts and monolithic casts. In contrast to cast concrete, double-bouligand design demonstrates a non-brittle response and a rising R-curve, due to a hypothesized bilayer crack shielding mechanism. In addition, interlocking behind and crack deflection ahead of the crack tip in bilayer double-bouligand architected concrete elicits a 63% increase in fracture toughness compared to cast counterparts.

52 References

  1. Bentz Dale, Jones Scott, Bentz Isaiah, Peltz Max (2019-02)
    Towards the Formulation of Robust and Sustainable Cementitious Binders for 3D Additive Construction by Extrusion
  2. Bos Freek, Menna Costantino, Pradena Mauricio, Kreiger Eric et al. (2022-03)
    The Realities of Additively Manufactured Concrete Structures in Practice
  3. Boscaro Federica, Quadranti Elia, Wangler Timothy, Mantellato Sara et al. (2022-02)
    Eco-Friendly, Set-on-Demand Digital Concrete
  4. Breseghello Luca, Naboni Roberto (2022-05)
    Tool-Path -Based Design for 3D Concrete Printing of Carbon-Efficient Architectural Structures
  5. Carneau Paul, Mesnil Romain, Roussel Nicolas, Baverel Olivier (2020-04)
    Additive Manufacturing of Cantilever:
    From Masonry to Concrete 3D Printing
  6. Chen Yu, He Shan, Zhang Yu, Wan Zhi et al. (2021-08)
    3D Printing of Calcined-Clay-Limestone-Based Cementitious Materials
  7. Das Arnesh, Aguilar Sanchez Asel, Wangler Timothy, Flatt Robert (2022-06)
    Freeze-Thaw-Performance of 3D Printed Concrete:
    Influence of Interfaces
  8. Das Arnesh, Reiter Lex, Mantellato Sara, Flatt Robert (2022-10)
    Early-Age Rheology and Hydration-Control of Ternary Binders for 3D Printing Applications
  9. Douba AlaEddin, Badjatya Palash, Kawashima Shiho (2022-03)
    Enhancing Carbonation and Strength of MgO Cement Through 3D Printing
  10. Douba AlaEddin, Chan Clare, Berrios Stephanie, Kawashima Shiho (2020-07)
    Synthesis of Hybridized Rheological Modifiers for 3D Concrete Printing
  11. Flatt Robert, Wangler Timothy (2022-05)
    On Sustainability and Digital Fabrication with Concrete
  12. Geng Zifan, She Wei, Zuo Wenqiang, Lyu Kai et al. (2020-09)
    Layer-Interface Properties in 3D Printed Concrete:
    Dual Hierarchical Structure and Micromechanical Characterization
  13. Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
    Large-Scale 3D Printing of Ultra-High-Performance Concrete:
    A New Processing Route for Architects and Builders
  14. Gupta Shashank, Esmaeeli Hadi, Prihar Arjun, Ghantous Rita et al. (2023-04)
    Fracture- and Transport-Analysis of Heterogeneous 3D Printed Lamellar Cementitious Materials
  15. Heever Marchant, Plessis Anton, Kruger Jacques, Zijl Gideon (2022-01)
    Evaluating the Effects of Porosity on the Mechanical Properties of Extrusion-Based 3D Printed Concrete
  16. Ivanova Irina, Ivaniuk Egor, Bisetti Sameercharan, Nerella Venkatesh et al. (2022-03)
    Comparison Between Methods for Indirect Assessment of Buildability in Fresh 3D Printed Mortar and Concrete
  17. Jones Scott, Bentz Dale, Martys Nicos, George William et al. (2018-09)
    Rheological Control of 3D Printable Cement-Paste and Mortars
  18. Kazemian Ali, Khoshnevis Behrokh (2021-08)
    Real-Time Extrusion-Quality-Monitoring-Techniques for Construction 3D Printing
  19. Kruger Jacques, Plessis Anton, Zijl Gideon (2020-12)
    An Investigation into the Porosity of Extrusion-Based 3D Printed Concrete
  20. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  21. Lee Hojae, Kim Jang-Ho, Moon Jae-Heum, Kim Won-Woo et al. (2019-08)
    Correlation Between Pore Characteristics and Tensile Bond Strength of Additive Manufactured Mortar Using X-Ray Computed Tomography
  22. Ma Guowei, Buswell Richard, Silva Wilson, Wang Li et al. (2022-03)
    Technology Readiness:
    A Global Snapshot of 3D Concrete Printing and the Frontiers for Development
  23. Marchon Delphine, Kawashima Shiho, Bessaies-Bey Hela, Mantellato Sara et al. (2018-05)
    Hydration- and Rheology-Control of Concrete for Digital Fabrication:
    Potential Admixtures and Cement-Chemistry
  24. Menna Costantino, Mata-Falcón Jaime, Bos Freek, Vantyghem Gieljan et al. (2020-04)
    Opportunities and Challenges for Structural Engineering of Digitally Fabricated Concrete
  25. Mohan Manu, Rahul Attupurathu, Stappen Jeroen, Cnudde Veerle et al. (2023-05)
    Assessment of Pore-Structure Characteristics and Tortuosity of 3D Printed Concrete Using Mercury-Intrusion-Porosimetry and X-Ray Tomography
  26. Moini Mohamadreza, Baghaie Ahmadreza, Rodriguez Fabian, Zavattieri Pablo et al. (2021-06)
    Quantitative Microstructural Investigation of 3D Printed and Cast Cement-Pastes Using Micro-Computed Tomography- and Image-Analysis
  27. Moini Mohamadreza, Olek Jan, Magee Bryan, Zavattieri Pablo et al. (2018-09)
    Additive Manufacturing and Characterization of Architectured Cement-Based Materials via X-Ray Micro-Computed Tomography
  28. Moini Mohamadreza, Olek Jan, Zavattieri Pablo, Youngblood Jeffrey (2022-04)
    Early-Age Buildability-Rheological Properties Relationship in Additively Manufactured Cement-Paste Hollow Cylinders
  29. Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2021-06)
    Technologies for Improving Buildability in 3D Concrete Printing
  30. Nair Sooraj, Sant Gaurav, Neithalath Narayanan (2021-11)
    Mathematical Morphology-Based Point-Cloud-Analysis-Techniques for Geometry-Assessment of 3D Printed Concrete Elements
  31. Nerella Venkatesh, Krause Martin, Mechtcherine Viktor (2019-11)
    Direct Printing-Test for Buildability of 3D Printable Concrete Considering Economic Viability
  32. Nguyen Vuong, Liu Junli, Li Shuai, Zhang Guomin et al. (2022-10)
    Modelling of 3D Printed Bio-Inspired Bouligand Cementitious Structures Reinforced with Steel-Fibers
  33. Nguyen Vuong, Panda Biranchi, Zhang Guomin, Nguyen-Xuan Hung et al. (2021-01)
    Digital Design Computing and Modelling for 3D Concrete Printing
  34. Pham Luong, Lu Guoxing, Tran Jonathan (2022-02)
    Influences of Printing-Pattern on Mechanical Performance of Three-Dimensional-Printed Fiber-Reinforced Concrete
  35. Pham Luong, Tran Jonathan, Sanjayan Jay (2020-04)
    Steel-Fiber-Reinforced 3D Printed Concrete:
    Influence of Fiber Sizes on Mechanical Performance
  36. Reiter Lex, Wangler Timothy, Anton Ana-Maria, Flatt Robert (2020-05)
    Setting-on-Demand for Digital Concrete:
    Principles, Measurements, Chemistry, Validation
  37. Rodriguez Fabian, Olek Jan, Moini Mohamadreza, Zavattieri Pablo et al. (2021-11)
    Linking Solids Content and Flow Properties of Mortars to Their Three-Dimensional Printing Characteristics
  38. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  39. Salet Theo, Ahmed Zeeshan, Bos Freek, Laagland Hans (2018-05)
    Design of a 3D Printed Concrete Bridge by Testing
  40. Silva Wilson, Fryda Hervé, Bousseau Jean-Noël, Andreani Pierre-Antoine et al. (2019-07)
    Evaluation of Early-Age Concrete Structural Build-Up for 3D Concrete Printing by Oscillatory Rheometry
  41. Szabó Anna, Reiter Lex, Lloret-Fritschi Ena, Gramazio Fabio et al. (2020-04)
    Mastering Yield-Stress-Evolution and Formwork-Friction for Smart Dynamic Casting
  42. Taleb Maria, Bulteel David, Betrancourt Damien, Roudet Francine et al. (2023-01)
    Multi-Scale Mechanical Characterization of the Interface in 3D Printed Concrete
  43. Tao Yaxin, Rahul Attupurathu, Lesage Karel, Tittelboom Kim et al. (2021-11)
    Mechanical and Microstructural Properties of 3D Printable Concrete in the Context of the Twin-Pipe Pumping-Strategy
  44. Wangler Timothy, Lloret-Fritschi Ena, Reiter Lex, Hack Norman et al. (2016-10)
    Digital Concrete:
    Opportunities and Challenges
  45. Wangler Timothy, Pileggi Rafael, Gürel Şeyma, Flatt Robert (2022-03)
    A Chemical Process Engineering Look at Digital Concrete Processes:
    Critical Step Design, In-Line Mixing, and Scale-Up
  46. Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
    Digital Concrete:
    A Review
  47. Weng Yiwei, Mohamed Nisar, Lee Brian, Gan Nicole et al. (2021-02)
    Extracting BIM Information for Lattice Tool-Path-Planning in Digital Concrete Printing with Developed Dynamo Script:
    A Case Study
  48. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  49. Wolfs Robert, Suiker Akke (2019-06)
    Structural Failure During Extrusion-Based 3D Printing Processes
  50. Xiao Jianzhuang, Chen Zixuan, Ding Tao, Zou Shuai (2021-10)
    Bending Behavior of Steel-Cable-Reinforced 3D Printed Concrete in the Direction Perpendicular to the Interfaces
  51. Yu Kequan, McGee Wesley, Ng Tsz, Zhu He et al. (2021-02)
    3D Printable Engineered Cementitious Composites:
    Fresh and Hardened Properties
  52. Zhang Ketao, Chermprayong Pisak, Xiao Feng, Tzoumanikas Dimos et al. (2022-09)
    Aerial Additive Manufacturing with Multiple Autonomous Robots

9 Citations

  1. Zhang Chao, Zhu Xiaohong, Li Muduo, Zhang Yuying et al. (2025-10)
    Enhancing Interface Adhesion of 3D Printable Concrete by Biochar Integration
  2. Du Guoqiang, Deng Xiaowei, Qian Ye (2025-09)
    Biomimetic 3D Printed Herringbone-Bouligand Cementitious Composites for Ultra-High Impact Performance
  3. Rabiei Mahsa, Moini Mohamadreza (2025-09)
    Extrusion Under Material Uncertainty with Pressure-Based Closed-Loop Feedback Control in Robotic Concrete Additive Manufacturing
  4. Li Shiping, Sun Yan, Qian Ye, Chen Wujun et al. (2025-08)
    Bio-Inspired Bouligand Architectures for Enhanced Flexural Performance in 3D-Printed Strain-Hardening Cementitious Composites (3DP-SHCC)
  5. Yang Rijiao, Xu Chengji, Fang Sen, Li Xinze et al. (2025-07)
    Mechanistic Insights into Microstructural Changes Caused by Stapling in Extrusion-Based 3D Printed Concrete (3DPC)
  6. Xia Kailun, Chen Yuning, Chen Yu, Jia Lutao et al. (2025-04)
    Programmable Toughening for 3D Printed Concrete and Architected Cementitious Materials
  7. Zhou Wen, Xu Yading, Meng Zhaozheng, Xie Jinbao et al. (2025-03)
    Filament Stitching:
    An Architected Printing Strategy to Mitigate Anisotropy in 3D-Printed Engineered Cementitious Composites
  8. Lori Ali, Mehrali Mehdi (2024-11)
    Mechanical Properties and Crack-Deflection Mechanisms in 3D Printed Porous Geopolymers with Cellular Structures
  9. Du Guoqiang, Qian Ye (2024-10)
    Bio-Inspired Innovations in 3D Concrete Printing:
    Structures, Materials and Applications

BibTeX
@article{prih_gupt_esma_moin.2024.TDBACEbRAM,
  author            = "Arjun Prihar and Shashank Gupta and Hadi S. Esmaeeli and Mohamadreza Moini",
  title             = "Tough Double-Bouligand Architected Concrete Enabled by Robotic Additive Manufacturing",
  doi               = "10.1038/s41467-024-51640-y",
  year              = "2024",
  journal           = "Nature Communications",
  volume            = "15",
  number            = "1",
}
Formatted Citation

A. Prihar, S. Gupta, H. S. Esmaeeli and M. Moini, “Tough Double-Bouligand Architected Concrete Enabled by Robotic Additive Manufacturing”, Nature Communications, vol. 15, no. 1, 2024, doi: 10.1038/s41467-024-51640-y.

Prihar, Arjun, Shashank Gupta, Hadi S. Esmaeeli, and Mohamadreza Moini. “Tough Double-Bouligand Architected Concrete Enabled by Robotic Additive Manufacturing”. Nature Communications 15, no. 1 (2024). https://doi.org/10.1038/s41467-024-51640-y.