Recycled Brick-Aggregates in One-Part Alkali-Activated Materials (2023-10)¶
, , , , , , , , , , , , ,
Journal Article - Developments in the Built Environment, Vol. 16, No. 100248
Abstract
This study investigates the printability of one-part brick powder-based alkali-activated materials (AAMs) containing end-of-life brick particles as aggregate. The novel formulation showcases promise for 3D printing of small to medium-sized building blocks, reminiscent of a Lego-type system, capitalising on the rapid setting time inherent to one-part AAMs. The effect of replacing up to 50% by weight of natural aggregate with brick aggregate on the fresh properties of brick powder-based alkali-activated materials, including slump measurements, flowability, setting time, open time and green strength were investigated. In addition, the flexural and compressive strength of the 3D printed mixtures were determined and compared to those of cast specimens. The buildability and microstructure were also examined. The results showed that incorporating high porous and rough brick aggregate to replace natural aggregate is beneficial in improving the mixtures’ slump, which is essential for retaining the shape of the printed layers. However, it decreased the flowability, setting time and open time when incorporating up to 50% brick aggregate. The green, flexural and compressive strengths were increased with increasing brick aggregate content up to 50% due to enhancing interlock between the binder and brick aggregate, and the better compaction because of the absorption properties of brick aggregate. The mechanical results revealed the better performance of 3D printed specimens than the cast specimens. Moreover, the incorporation of brick aggregate enhanced the buildability of the mixtures showcasing their potential in advancing 3D printing capabilities.
¶
38 References
- Adaloudis Max, Bonnin Roca Jaime (2021-05)
Sustainability Tradeoffs in the Adoption of 3D Concrete Printing in the Construction Industry - Agustí-Juan Isolda, Müller Florian, Hack Norman, Wangler Timothy et al. (2017-04)
Potential Benefits of Digital Fabrication for Complex Structures:
Environmental Assessment of a Robotically Fabricated Concrete Wall - Bong Shin, Nematollahi Behzad, Nerella Venkatesh, Mechtcherine Viktor (2022-09)
Method of Formulating 3D Printable Strain-Hardening Alkali-Activated Composites for Additive Construction - Bong Shin, Nematollahi Behzad, Xia Ming, Ghaffar Seyed et al. (2022-04)
Properties of Additively Manufactured Geopolymer Incorporating Mineral-Wollastonite-Micro-Fibers - Bong Shin, Xia Ming, Nematollahi Behzad, Shi Caijun (2021-04)
Ambient Temperature Cured ‘Just-Add-Water’ Geopolymer for 3D Concrete Printing Applications - Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
Additive Manufacturing of Concrete in Construction:
Potentials and Challenges of 3D Concrete Printing - Casagrande Lorenzo, Esposito Laura, Menna Costantino, Asprone Domenico et al. (2020-02)
Effect of Testing Procedures on Buildability Properties of 3D Printable Concrete - Chen Yuning, Jia Lutao, Liu Chao, Zhang Zedi et al. (2022-01)
Mechanical Anisotropy Evolution of 3D Printed Alkali-Activated Materials with Different GGBFS-FA Combinations - Chougan Mehdi, Ghaffar Seyed, Nematollahi Behzad, Sikora Paweł et al. (2022-09)
Effect of Natural and Calcined-Halloysite-Clay-Minerals as Low-Cost-Additives on the Performance of 3D Printed Alkali-Activated Materials - Christen Heidi, Cho Seung, Zijl Gideon, Villiers Wibke (2022-11)
Phase-Change-Material-Infused Recycled Brick-Aggregate in 3D Printed Concrete - Christen Heidi, Zijl Gideon, Villiers Wibke (2022-05)
The Incorporation of Recycled Brick-Aggregate in 3D Printed Concrete - Dai Xiaodi, Tao Yaxin, Tittelboom Kim, Schutter Geert (2023-02)
Rheological and Mechanical Properties of 3D Printable Alkali-Activated Slag Mixtures with Addition of Nano Clay - Ding Tao, Xiao Jianzhuang, Qin Fei, Duan Zhenhua (2020-03)
Mechanical Behavior of 3D Printed Mortar with Recycled Sand at Early-Ages - İlcan Hüseyin, Şahin Oğuzhan, Kul Anil, Yıldırım Gürkan et al. (2022-03)
Rheological Properties and Compressive Strength of Construction and Demolition Waste-Based Geopolymer Mortars for 3D Printing - Jones Scott, Bentz Dale, Martys Nicos, George William et al. (2018-09)
Rheological Control of 3D Printable Cement-Paste and Mortars - Kondepudi Kala, Subramaniam Kolluru (2021-02)
Formulation of Alkali-Activated Fly-Ash-Slag Binders for 3D Concrete Printing - Kondepudi Kala, Subramaniam Kolluru, Nematollahi Behzad, Bong Shin et al. (2022-05)
Study of Particle-Packing and Paste-Rheology in Alkali-Activated Mixtures to Meet the Rheology Demands of 3D Concrete Printing - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Ma Guowei, Li Zhijian, Wang Li (2017-12)
Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing - Ma Guowei, Zhang Junfei, Wang Li, Li Zhijian et al. (2018-06)
Mechanical Characterization of 3D Printed Anisotropic Cementitious Material by the Electromechanical Transducer - Markin Slava, Krause Martin, Otto Jens, Schröfl Christof et al. (2021-06)
3D Printing with Foam-Concrete:
From Material Design and Testing to Application and Sustainability - Menna Costantino, Mata-Falcón Jaime, Bos Freek, Vantyghem Gieljan et al. (2020-04)
Opportunities and Challenges for Structural Engineering of Digitally Fabricated Concrete - Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing - Noaimat Yazeed, Chougan Mehdi, Kheetan Mazen, Mandhari Othman et al. (2023-04)
3D Printing of Limestone-Calcined-Clay-Cement:
A Review of Its Potential Implementation in the Construction-Industry - Noaimat Yazeed, Ghaffar Seyed, Chougan Mehdi, Kheetan Mazen (2022-12)
A Review of 3D Printing Low-Carbon Concrete with One-Part Geopolymer:
Engineering, Environmental and Economic Feasibility - Panda Biranchi, Bhagath Singh Gangapatnam, Unluer Cise, Tan Ming (2019-02)
Synthesis and Characterization of One-Part Geopolymers for Extrusion-Based 3D Concrete Printing - Panda Biranchi, Lim Jian, Tan Ming (2019-02)
Mechanical Properties and Deformation Behavior of Early-Age Concrete in the Context of Digital Construction - Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
Additive Manufacturing of Geopolymer for Sustainable Built Environment - Panda Biranchi, Unluer Cise, Tan Ming (2019-08)
Extrusion and Rheology Characterization of Geopolymer Nanocomposites Used in 3D Printing - Pasupathy Kirubajiny, Ramakrishnan Sayanthan, Sanjayan Jay (2023-01)
3D Concrete Printing of Eco-Friendly Geopolymer Containing Brick Waste - Sikora Paweł, Techman Mateusz, Federowicz Karol, Khayatt Ahmed et al. (2022-07)
Insight into the Microstructural and Durability Characteristics of 3D Printed Concrete:
Cast versus Printed Specimens - Skibicki Szymon, Jakubowska Patrycja, Kaszyńska Maria, Sibera Daniel et al. (2021-12)
Early-Age Mechanical Properties of 3D Printed Mortar with Spent Garnet - Tay Yi, Qian Ye, Tan Ming (2019-05)
Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test - Weng Yiwei, Li Mingyang, Ruan Shaoqin, Wong Teck et al. (2020-03)
Comparative Economic, Environmental and Productivity-Assessment of a Concrete Bathroom Unit Fabricated Through 3D Printing and a Pre-Cast Approach - Wolfs Robert, Bos Freek, Salet Theo (2018-02)
Early-Age Mechanical Behaviour of 3D Printed Concrete:
Numerical Modelling and Experimental Testing - Yang Liming, Sepasgozar Samad, Shirowzhan Sara, Kashani Alireza et al. (2022-12)
Nozzle Criteria for Enhancing Extrudability, Buildability and Inter-Layer Bonding in 3D Printing Concrete - Yu Shiwei, Du Hongjian, Sanjayan Jay (2020-07)
Aggregate-Bed 3D Concrete Printing with Cement-Paste Binder - Zhong Hui, Zhang Mingzhong (2022-02)
3D Printing Geopolymers:
A Review
18 Citations
- Ma Jinyi, Zhang Haiyan, Wang Yanzhi, Xiong Lu et al. (2025-07)
Effect of Clay Brick Powder and Recycled Fine Aggregates on Properties of 3D Printed Concrete After High Temperature Exposure - Mahmoodi Obaid, Siad Hocine, Lachemi Mohamed, Şahmaran Mustafa (2025-07)
Recent Advances in CDW-Based Geopolymers:
A Review of Mechanical Performance, Structural Application, 3D Printing, Durability and Sustainability - Noaimat Yazeed, Chougan Mehdi, Sambucci Matteo, Valente Marco et al. (2025-06)
Optimising Limestone Calcined Clay Cement Containing Excavated Low-Grade Waste Clay for 3D Printing Applications - Noaimat Yazeed, Chougan Mehdi, Seidy Eslam, Albar Abdulrahman et al. (2025-04)
Optimizing Limestone Calcined Clay Cement for Enhanced 3D Printing Performance of Low-Carbon Materials - İlcan Hüseyin, Külak Adnan, Şahin Oğuzhan, Aldemir Alper et al. (2025-04)
Reinforcement and Modular System for 3DCP Geopolymer Structures Using Construction and Demolition Waste - Sikora Paweł, Skibicki Szymon, Chougan Mehdi, Szewczyk Piotr et al. (2025-03)
Silica-Coated Admixtures of Bismuth and Gadolinium Oxides for 3D Printed Concrete Applications:
Rheology, Hydration, Strength, Microstructure, and Radiation Shielding Perspective - Gurunandan M., Nedunuri Aparna, Tanwar Jayant, Nanthagopalan Prakash et al. (2025-02)
Development of 3D-Printable Alkali-Activated GGBFS and Fly-Ash-Binder-Based Mortars with Concrete-Demolition-Waste as Aggregates - Raqeb Hanan, Ghaffar Seyed (2024-12)
3D Concrete Printing in Kuwait:
Stakeholder Insights for Sustainable Waste Management Solutions - Murali Gunasekaran, Leong Sing (2024-11)
Waste-Driven Construction:
A State of the Art Review on the Integration of Waste in 3D Printed Concrete in Recent Researches for Sustainable Development - Lan Tian, Yang Shutong, Xu Mingqi, Chen Zhengyuan et al. (2024-10)
Quantitative Assessment of Interfacial-Fracture-Properties in 3D Printed Alkali-Activated Recycled Sand Concrete Based on a Closed-Form Fracture-Model - Chougan Mehdi, Skibicki Szymon, Noaimat Yazeed, Federowicz Karol et al. (2024-09)
Comparative Analysis of Ternary Blended Cement with Clay and Engineering-Brick-Aggregate for High-Performance 3D Printing - Noaimat Yazeed, Ghaffar Seyed (2024-09)
Exploring Low-Carbon Cementitious Materials for 3D Printing Applications:
A Comparison Between Limestone-Calcined-Clay-Cement and One-Part Alkai-Activated Material - Reißig Silvia, Herdan Annika, Mechtcherine Viktor (2024-09)
Characterisation of the Rheological Behavior of a Resource-Saving Sustainable Concrete in the Context of 3D Printing - Ghaffar Seyed, Noaimat Yazeed, Chougan Mehdi, Kheetan Mazen (2024-06)
Emerging Resources for the Development of Low-Carbon Cementitious Composites for 3D Printing Applications - Skibicki Szymon, Federowicz Karol, Hoffmann Marcin, Chougan Mehdi et al. (2024-05)
Potential of Reusing 3D Printed Concrete (3DPC) Fine Recycled Aggregates as a Strategy Towards Decreasing Cement Content in 3DPC - Zaid Osama, Ouni Mohamed (2024-04)
Advancements in 3D Printing of Cementitious Materials:
A Review of Mineral Additives, Properties, and Systematic Developments - Skibicki Szymon, Szewczyk Piotr, Majewska Julia, Sibera Daniel et al. (2024-03)
The Effect of Inter-Layer Adhesion on Stress-Distribution in 3D Printed Beam Elements - Chen Zhengyuan, Yang Shutong, Liu Qi, Xu Mingqi et al. (2024-03)
Closed-Form Fracture-Model for Evaluating Crack-Resistance of 3D Printed Fiber-Reinforced Alkali-Activated Slag/Fly-Ash Recycled-Sand Concrete
BibTeX
@article{noai_chou_alba_skib.2023.RBAiOPAAM,
author = "Yazeed Afet Adnan Al Noaimat and Mehdi Chougan and Abdulrahman M. Albar and Szymon Skibicki and Karol Federowicz and Marcin Hoffmann and Daniel Sibera and Krzysztof Cendrowski and Mateusz Techman and João Nuno Pacheco and Sang-Yeop Chung and Paweł Sikora and Mazen J. al Kheetan and Seyed Hamidreza Ghaffar",
title = "Recycled Brick-Aggregates in One-Part Alkali-Activated Materials: Impact on 3D Printing Performance and Material-Properties",
doi = "10.1016/j.dibe.2023.100248",
year = "2023",
journal = "Developments in the Built Environment",
volume = "16",
pages = "100248",
}
Formatted Citation
Y. A. A. A. Noaimat, “Recycled Brick-Aggregates in One-Part Alkali-Activated Materials: Impact on 3D Printing Performance and Material-Properties”, Developments in the Built Environment, vol. 16, p. 100248, 2023, doi: 10.1016/j.dibe.2023.100248.
Noaimat, Yazeed Afet Adnan Al, Mehdi Chougan, Abdulrahman M. Albar, Szymon Skibicki, Karol Federowicz, Marcin Hoffmann, Daniel Sibera, et al.. “Recycled Brick-Aggregates in One-Part Alkali-Activated Materials: Impact on 3D Printing Performance and Material-Properties”. Developments in the Built Environment 16 (2023): 100248. https://doi.org/10.1016/j.dibe.2023.100248.