A Mechanistic Evaluation Relating Microstructural Morphology to a Modified Mohr-Griffith Compression-Shear Constitutive-Model for 3D Printed Concrete (2022-02)¶
10.1016/j.conbuildmat.2022.126743
, , , ,
Journal Article - Construction and Building Materials, Vol. 325
Abstract
The hardened-state mechanical characteristics of 3D printable concrete (3DPC) mixtures exhibit a strong dependence on the employed extrusion-based process, material, and design parameters and are predominantly anisotropic by nature. It has been shown that at the heart of the observed mechanical anisotropy lies the microstructural morphology of the manufactured component. Additionally, it is hypothesised that a linear Coulomb friction assumption misrepresents the interfacial compression-shear constitutive behaviour exhibited in 3DPC. Thus, additional calibration of the shear model parameters is sought, forming the basis for the current investigation. In this regard, the present contribution offers a comprehensive investigation of the constant compression-shear performance of a fibre-reinforced printable concrete (FRPC) mixture via a direct shear test (DST) methodology for concrete samples additively manufactured by extrusion-based 3D concrete printing (3DCP). The anisotropic material strength is studied in the three orthogonal material planes, then suitable failure criteria are considered, and a novel modified Mohr-Griffith criterion is proposed. X-ray computed tomography (CT) is employed to explore the microstructural morphology (pore size, shape, orientation, and total porosity content), fracture surface angle, and fracture surface area of 3DCP inter and intralayers compared to specimens cast from the same FRPC mixture. A mechanistic evaluation of the constant compression-shear performances relates the ensuing shear strength to the microstructural morphology observed in the experimentally assessed samples. Thereby, this contribution provides the basis for a fundamentally more detailed understanding of the hardened-state mechanical capacity of 3DPC, which is supported by a novel failure criterion and solid theoretical explanations of the influential microstructural features affecting the mechanical characteristics. Finally, it is postulated that improved mechanical performance and reduced anisotropy, conjuring less material complexity and uncertainty, is permitted by stabilising the microstructural morphology in 3DPC.
¶
60 References
- Asprone Domenico, Menna Costantino, Bos Freek, Salet Theo et al. (2018-06)
Rethinking Reinforcement for Digital Fabrication with Concrete - Baz Bilal, Aouad Georges, Rémond Sébastien (2020-01)
Effect of the Printing Method and Mortar’s Workability on Pull-Out Strength of 3D Printed Elements - Bester Frederick, Heever Marchant, Kruger Jacques, Zijl Gideon (2020-11)
Reinforcing Digitally Fabricated Concrete:
A Systems Approach Review - Bos Freek, Ahmed Zeeshan, Jutinov Evgeniy, Salet Theo (2017-11)
Experimental Exploration of Metal-Cable as Reinforcement in 3D Printed Concrete - Bos Freek, Bosco Emanuela, Salet Theo (2018-11)
Ductility of 3D Printed Concrete Reinforced with Short Straight Steel-Fibers - Bos Freek, Kruger Jacques, Lucas Sandra, Zijl Gideon (2021-04)
Juxtaposing Fresh Material-Characterisation-Methods for Buildability-Assessment of 3D Printable Cementitious Mortars - Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
Additive Manufacturing of Concrete in Construction:
Potentials and Challenges of 3D Concrete Printing - Chen Yu, Çopuroğlu Oğuzhan, Rodríguez Claudia, Filho Fernando et al. (2021-02)
Characterization of Air-Void Systems in 3D Printed Cementitious Materials Using Optical Image Scanning and X-Ray Computed Tomography - Chen Yu, Jansen Koen, Zhang Hongzhi, Rodríguez Claudia et al. (2020-07)
Effect of Printing-Parameters on Inter-Layer Bond Strength of 3D Printed Limestone-Calcined-Clay-Based Cementitious Materials:
An Experimental and Numerical Study - Duballet Romain, Baverel Olivier, Dirrenberger Justin (2017-08)
Classification of Building Systems for Concrete 3D Printing - Feng Peng, Meng Xinmiao, Chen Jian-Fei, Ye Lieping (2015-06)
Mechanical Properties of Structures 3D Printed with Cementitious Powders - Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2020-05)
Mechanical Behavior of Printed Strain-Hardening Cementitious Composites - He Lewei, Tan Jolyn, Chow Wai, Li Hua et al. (2021-11)
Design of Novel Nozzles for Higher Inter-Layer Strength of 3D Printed Cement-Paste - Heever Marchant, Bester Frederick, Kruger Jacques, Zijl Gideon (2021-07)
Mechanical Characterisation for Numerical Simulation of Extrusion-Based 3D Concrete Printing - Heever Marchant, Bester Frederick, Kruger Jacques, Zijl Gideon (2021-12)
Numerical Modelling-Strategies for Reinforced 3D Concrete Printed Elements - Heever Marchant, Bester Frederick, Pourbehi Mohammad, Kruger Jacques et al. (2020-07)
Characterizing the Fissility of 3D Concrete Printed Elements via the Cohesive Zone Method - Heever Marchant, Plessis Anton, Kruger Jacques, Zijl Gideon (2022-01)
Evaluating the Effects of Porosity on the Mechanical Properties of Extrusion-Based 3D Printed Concrete - Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
A Review of 3D Printed Concrete:
Performance-Requirements, Testing Measurements and Mix-Design - Jayathilakage Roshan, Sanjayan Jay, Rajeev Pathmanathan (2019-01)
Direct-Shear-Test for the Assessment of Rheological Parameters of Concrete for 3D Printing Applications - Kloft Harald, Krauss Hans-Werner, Hack Norman, Herrmann Eric et al. (2020-05)
Influence of Process Parameters on the Inter-Layer Bond Strength of Concrete Elements Additive Manufactured by Shotcrete 3D Printing - Kruger Jacques, Cho Seung, Zeranka Stephan, Vintila Cristian et al. (2019-12)
3D Concrete Printer Parameter Optimization for High-Rate Digital Construction Avoiding Plastic Collapse - Kruger Jacques, Plessis Anton, Zijl Gideon (2020-12)
An Investigation into the Porosity of Extrusion-Based 3D Printed Concrete - Kruger Jacques, Zijl Gideon (2020-10)
A Compendious Review on Lack-of-Fusion in Digital Concrete Fabrication - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Hardened Properties of High-Performance Printing Concrete - Lee Hojae, Kim Jang-Ho, Moon Jae-Heum, Kim Won-Woo et al. (2019-08)
Correlation Between Pore Characteristics and Tensile Bond Strength of Additive Manufactured Mortar Using X-Ray Computed Tomography - Lim Sungwoo, Buswell Richard, Le Thanh, Wackrow Rene et al. (2011-07)
Development of a Viable Concrete Printing Process - Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing - Ma Guowei, Salman Nazar, Wang Li, Wang Fang (2020-02)
A Novel Additive Mortar Leveraging Internal Curing for Enhancing Inter-Layer Bonding of Cementitious Composite for 3D Printing - Marchment Taylor, Sanjayan Jay (2020-09)
Bond Properties of Reinforcing Bar Penetrations in 3D Concrete Printing - Marchment Taylor, Sanjayan Jay (2019-10)
Mesh Reinforcing Method for 3D Concrete Printing - Marchment Taylor, Sanjayan Jay, Xia Ming (2019-03)
Method of Enhancing Inter-Layer Bond Strength in Construction-Scale 3D Printing with Mortar by Effective Bond Area Amplification - Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
Extrusion-Based Additive Manufacturing with Cement-Based Materials:
Production Steps, Processes, and Their Underlying Physics - Mechtcherine Viktor, Grafe Jasmin, Nerella Venkatesh, Spaniol Erik et al. (2018-05)
3D Printed Steel-Reinforcement for Digital Concrete Construction:
Manufacture, Mechanical Properties and Bond Behavior - Menna Costantino, Mata-Falcón Jaime, Bos Freek, Vantyghem Gieljan et al. (2020-04)
Opportunities and Challenges for Structural Engineering of Digitally Fabricated Concrete - Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2020-08)
Plastic Shrinkage Cracking in 3D Printed Concrete - Nematollahi Behzad, Vijay Praful, Sanjayan Jay, Nazari Ali et al. (2018-11)
Effect of Polypropylene Fiber Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction - Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing - Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material - Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction - Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
A Review of 3D Concrete Printing Systems and Materials Properties:
Current Status and Future Research Prospects - Plessis Anton, Babafemi Adewumi, Paul Suvash, Panda Biranchi et al. (2020-12)
Biomimicry for 3D Concrete Printing:
A Review and Perspective - Putten Jolien, Azima M., Heede Philip, Mullem T. et al. (2020-06)
Neutron-Radiography to Study the Water-Ingress via the Inter-Layer of 3D Printed Cementitious Materials for Continuous Layering - Putten Jolien, Deprez Maxim, Cnudde Veerle, Schutter Geert et al. (2019-09)
Microstructural Characterization of 3D Printed Cementitious Materials - Roussel Nicolas (2018-05)
Rheological Requirements for Printable Concretes - Salet Theo, Ahmed Zeeshan, Bos Freek, Laagland Hans (2018-05)
Design of a 3D Printed Concrete Bridge by Testing - Salet Theo, Bos Freek, Wolfs Robert, Ahmed Zeeshan (2017-06)
3D Concrete Printing:
A Structural Engineering Perspective - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete - Sonebi Mohammed, Amziane Sofiane, Perrot Arnaud (2019-04)
Mechanical Behavior of 3D Printed Cement Materials - Souza Marcelo, Ferreira Igor, Moraes Elisângela, Senff Luciano et al. (2020-09)
3D Printed Concrete for Large-Scale Buildings:
An Overview of Rheology, Printing Parameters, Chemical Admixtures, Reinforcements, and Economic and Environmental Prospects - Valle‐Pello P., Álvarez‐Rabanal Felipe, Alonso‐Martínez M., Coz Díaz J. (2019-05)
Numerical Study of the Interfaces of 3D Printed Concrete Using Discrete Element Method - Vespalec Arnošt, Novák Josef, Kohoutková Alena, Vosynek Petr et al. (2020-11)
Interface Behavior and Interface Tensile Strength of a Hardened Concrete Mixture with a Coarse Aggregate for Additive Manufacturing - Wang Li, Jiang Hailong, Li Zhijian, Ma Guowei (2020-02)
Mechanical Behaviors of 3D Printed Lightweight Concrete Structure with Hollow Section - Wangler Timothy, Lloret-Fritschi Ena, Reiter Lex, Hack Norman et al. (2016-10)
Digital Concrete:
Opportunities and Challenges - Wang Li, Ma Guowei, Liu Tianhao, Buswell Richard et al. (2021-07)
Inter-Layer Reinforcement of 3D Printed Concrete by the In-Process Deposition of U-Nails - Weng Yiwei, Li Mingyang, Zhang Dong, Tan Ming et al. (2021-02)
Investigation of Inter-Layer Adhesion of 3D Printable Cementitious Material from the Aspect of Printing-Process - Wolfs Robert, Bos Freek, Salet Theo (2018-02)
Early-Age Mechanical Behaviour of 3D Printed Concrete:
Numerical Modelling and Experimental Testing - Wolfs Robert, Bos Freek, Salet Theo (2019-03)
Hardened Properties of 3D Printed Concrete:
The Influence of Process Parameters on Inter-Layer Adhesion - Xiao Jianzhuang, Han Nv, Zhang Lihai, Zou Shuai (2021-05)
Mechanical and Microstructural Evolution of 3D Printed Concrete with Polyethylene-Fiber and Recycled Sand at Elevated Temperatures - Xiao Jianzhuang, Zou Shuai, Yu Ying, Wang Yu et al. (2020-09)
3D Recycled Mortar Printing:
System-Development, Process-Design, Material-Properties and On-Site-Printing - Yu Shiwei, Xia Ming, Sanjayan Jay, Yang Lin et al. (2021-07)
Microstructural Characterization of 3D Printed Concrete
18 Citations
- Giulivo Marco, Capozzi Vittorio, Menna Costantino (2025-10)
Experimental and Analytical Assessment of the in-Plane Behaviour of 3D Printed Concrete Walls Subjected to Cyclic Loads - Liao Minmao, Gerong Wangdui, Wang Pengfei, Chen Zhaohui (2025-08)
Determination of Elastic Engineering Constants in an Orthotropic Constitutive Model for Hardened 3D-Printed Concrete - Liu Junli, Hai Hoang, Tran Mien, Tran Jonathan (2025-04)
Advancing Microstructural Insights in 3D-Printed Cementitious Materials via X-Ray Micro-Computed Tomography - Licciardello Lucia, Soto Alejandro, Kaufmann Walter, Metelli Giovanni (2025-01)
Determining the Strength of 3D Printed Concrete with the Modified Slant-Shear-Test - Wang Hailong, Shen Junyi, Sun Xiaoyan, Dong Weiwei et al. (2024-12)
Numerical Investigation on Shear Behavior of Reinforced Concrete Beam with 3D Printed Concrete Permanent Formwork - Wagner Juliana, Silveira Marcos, Vanderlei Romel, Das Sreekanta (2024-10)
Comparative Analysis of Mold-Cast and 3D Printed Cement-Based Components:
Implications for Standardization in Additive Construction - Aminpour Nima, Memari Ali (2024-10)
Numerical and Experimental Study on Reinforced 3DCP Walls Filled with Lightweight Concrete - Chen Baixi, Zhao Xueqi, Qian Xiaoping (2024-09)
Voxel-Based Path-Driven 3D Concrete Printing Process Simulation Framework Embedding Inter-Layer Behavior - Soto Alejandro, Gebhard Lukas, Anton Ana-Maria, Dillenburger Benjamin et al. (2024-09)
Structural Testing Campaign for a 30 m Tall 3D Printed Concrete Tower - Huseien Ghasan, Tan Shea, Saleh Ali, Lim Nor et al. (2024-08)
Test-Procedures and Mechanical Properties of Three-Dimensional Printable Concrete Enclosing Different Mix-Proportions:
A Review and Bibliometric Analysis - Baktheer Abedulgader, Claßen Martin (2024-07)
A Review of Recent Trends and Challenges in Numerical Modeling of the Anisotropic Behavior of Hardened 3D Printed Concrete - Wang Xiaonan, Li Wengui, Guo Yipu, Kashani Alireza et al. (2024-02)
Concrete 3D Printing Technology in Sustainable Construction:
A Review on Raw Materials, Concrete Types and Performances - Sedghi Reza, Rashidi Kourosh, Hojati Maryam (2024-01)
Large-Scale 3D Wall Printing:
From Concept to Reality - Tang Yuxiang, Xiao Jianzhuang, Ding Tao, Liu Haoran et al. (2024-01)
Trans-Layer and Inter-Layer Fracture Behavior of Extrusion-Based 3D Printed Concrete Under Three-Point Bending - Chen Yanjuan, Kuva Jukka, Mohite Ashish, Li Zhongsen et al. (2023-03)
Investigation of the Internal Structure of Hardened 3D Printed Concrete by X-CT Scanning and Its Influence on the Mechanical Performance - Nguyen Vuong, Li Shuai, Liu Junli, Nguyen Kien et al. (2022-11)
Modelling of 3D Concrete Printing Process:
A Perspective on Material and Structural Simulations - He Lewei, Li Hua, Chow Wai, Zeng Biqing et al. (2022-09)
Increasing the Inter-Layer Strength of 3D Printed Concrete with Tooth-Like Interface:
An Experimental and Theoretical Investigation - Han Nv, Xiao Jianzhuang, Zhang Lihai, Peng Yu (2022-06)
A Micro-Scale-Based Numerical Model for Investigating Hygro-Thermo-Mechanical Behavior of 3D Printed Concrete at Elevated Temperatures
BibTeX
@article{heev_ples_best_krug.2022.AMERMMtaMMGCSCMf3PC,
author = "Marchant van den Heever and Anton du Plessis and Frederick A. Bester and Jacques Pienaar Kruger and Gideon Pieter Adriaan Greeff van Zijl",
title = "A Mechanistic Evaluation Relating Microstructural Morphology to a Modified Mohr-Griffith Compression-Shear Constitutive-Model for 3D Printed Concrete",
doi = "10.1016/j.conbuildmat.2022.126743",
year = "2022",
journal = "Construction and Building Materials",
volume = "325",
}
Formatted Citation
M. van den Heever, A. du Plessis, F. A. Bester, J. P. Kruger and G. P. A. G. van Zijl, “A Mechanistic Evaluation Relating Microstructural Morphology to a Modified Mohr-Griffith Compression-Shear Constitutive-Model for 3D Printed Concrete”, Construction and Building Materials, vol. 325, 2022, doi: 10.1016/j.conbuildmat.2022.126743.
Heever, Marchant van den, Anton du Plessis, Frederick A. Bester, Jacques Pienaar Kruger, and Gideon Pieter Adriaan Greeff van Zijl. “A Mechanistic Evaluation Relating Microstructural Morphology to a Modified Mohr-Griffith Compression-Shear Constitutive-Model for 3D Printed Concrete”. Construction and Building Materials 325 (2022). https://doi.org/10.1016/j.conbuildmat.2022.126743.