Insight into the Microstructural and Durability Characteristics of 3D Printed Concrete (2022-07)¶
, , , , Saudi H., , , ,
Journal Article - Case Studies in Construction Materials, Vol. 17
Abstract
This study presents the comparison of microstructural and durability characteristics of 3D printed concrete (3DPC) depending on its production method (printing or casting). Printed samples with different numbers of layers, as well as a cast specimen with an identical mix composition, were produced and compared, with their microstructural pore and solid characteristics quantitatively and qualitatively investigated. For this purpose, scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP) and X-ray micro-computed tomography (micro-CT) were utilized to evaluate the microstructures of the 3DPC. In particular, quantitative approaches using micro-CT data were newly proposed for a better understanding of the microstructural characteristics of 3DPC. Moreover, their durability-related characteristics and transport properties, including freeze-thaw and thermal resistance, were examined and compared. Despite noticeable differences between the microstructures of the printed and cast specimens, including their anisotropic and inter-layer porosity and heterogeneity, confirmed by MIP, SEM and micro-CT, no significant differences in the transport (capillary water porosity and water sorptivity) or durability-related properties (frost and thermal attack) were found. This was due to the dense and homogenous microstructure of 3DPC, which is attributable to the high binder content and low w/b of the mixture. Moreover, the newly proposed evaluation provided reasonable quantitative and qualitative characteristics, which can be used to demonstrate and predict the material properties of 3DPC.
¶
31 References
- Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing - Assaad Joseph, Hamzeh Farook, Hamad Bilal (2020-05)
Qualitative Assessment of Interfacial Bonding in 3D Printing Concrete Exposed to Frost-Attack - Bai Gang, Wang Li, Ma Guowei, Sanjayan Jay et al. (2021-03)
3D Printing Eco-Friendly Concrete Containing Under-Utilised and Waste Solids as Aggregates - Baz Bilal, Aouad Georges, Kleib Joelle, Bulteel David et al. (2021-04)
Durability-Assessment and Micro-Structural Analysis of 3D Printed Concrete Exposed to Sulfuric-Acid Environments - Chen Yu, Çopuroğlu Oğuzhan, Rodríguez Claudia, Filho Fernando et al. (2021-02)
Characterization of Air-Void Systems in 3D Printed Cementitious Materials Using Optical Image Scanning and X-Ray Computed Tomography - Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture - Chougan Mehdi, Ghaffar Seyed, Sikora Paweł, Chung Sang-Yeop et al. (2021-02)
Investigation of Additive Incorporation on Rheological, Microstructural and Mechanical Properties of 3D Printable Alkali-Activated Materials - Cicione Antonio, Kruger Jacques, Walls Richard, Zijl Gideon (2020-05)
An Experimental Study of the Behavior of 3D Printed Concrete at Elevated Temperatures - Cuevas Villalobos Karla, Chougan Mehdi, Martin Falk, Ghaffar Seyed et al. (2021-05)
3D Printable Lightweight Cementitious Composites with Incorporated Waste-Glass-Aggregates and Expanded Microspheres:
Rheological, Thermal and Mechanical Properties - Federowicz Karol, Kaszyńska Maria, Zieliński Adam, Hoffmann Marcin (2020-06)
Effect of Curing Methods on Shrinkage Development in 3D Printed Concrete - Hoffmann Marcin, Skibicki Szymon, Pankratow Paweł, Zieliński Adam et al. (2020-04)
Automation in the Construction of a 3D Printed Concrete Wall with the Use of a Lintel Gripper - Joh Changbin, Lee Jungwoo, Bui The, Park Jihun et al. (2020-11)
Buildability and Mechanical Properties of 3D Printed Concrete - Kaszyńska Maria, Skibicki Szymon, Hoffmann Marcin (2020-12)
3D Concrete Printing for Sustainable Construction - Kruger Jacques, Plessis Anton, Zijl Gideon (2020-12)
An Investigation into the Porosity of Extrusion-Based 3D Printed Concrete - Lee Hojae, Kim Jang-Ho, Moon Jae-Heum, Kim Won-Woo et al. (2019-12)
Evaluation of the Mechanical Properties of a 3D Printed Mortar - Moini Mohamadreza, Olek Jan, Youngblood Jeffrey, Magee Bryan et al. (2018-08)
Additive Manufacturing and Performance of Architectured Cement-Based Materials - Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing - Putten Jolien, Deprez Maxim, Cnudde Veerle, Schutter Geert et al. (2019-09)
Microstructural Characterization of 3D Printed Cementitious Materials - Putten Jolien, Volder Melissa, Heede Philip, Schutter Geert et al. (2020-07)
3D Printing of Concrete:
The Influence on Chloride Penetration - Sayegh Sameh, Romdhane Lotfi, Manjikian Solair (2022-03)
A Critical Review of 3D Printing in Construction:
Benefits, Challenges, and Risks - Schröfl Christof, Nerella Venkatesh, Mechtcherine Viktor (2018-09)
Capillary Water Intake by 3D Printed Concrete Visualised and Quantified by Neutron Radiography - Sikora Paweł, Chougan Mehdi, Cuevas Villalobos Karla, Liebscher Marco et al. (2021-02)
The Effects of Nano- and Micro-Sized Additives on 3D Printable Cementitious and Alkali-Activated Composites:
A Review - Sikora Paweł, Chung Sang-Yeop, Liard Maxime, Lootens Didier et al. (2021-02)
The Effects of Nano-Silica on the Fresh and Hardened Properties of 3D Printable Mortars - Skibicki Szymon, Pułtorak Monika, Kaszyńska Maria, Hoffmann Marcin et al. (2022-04)
The Effect of Using Recycled PET-Aggregates on Mechanical and Durability Properties of 3D Printed Mortar - Tay Yi, Qian Ye, Tan Ming (2019-05)
Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test - Tay Yi, Ting Guan, Qian Ye, Panda Biranchi et al. (2018-07)
Time-Gap-Effect on Bond Strength of 3D Printed Concrete - Xiao Jianzhuang, Han Nv, Zhang Lihai, Zou Shuai (2021-05)
Mechanical and Microstructural Evolution of 3D Printed Concrete with Polyethylene-Fiber and Recycled Sand at Elevated Temperatures - Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
Large-Scale 3D Printing Concrete Technology:
Current Status and Future Opportunities - Yang Huashan, Li Weiwei, Che Yujun (2020-08)
3D Printing Cementitious Materials Containing Nano-CaCO3:
Workability, Strength, and Microstructure - Yu Shiwei, Xia Ming, Sanjayan Jay, Yang Lin et al. (2021-07)
Microstructural Characterization of 3D Printed Concrete - Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
Mix-Design Concepts for 3D Printable Concrete:
A Review
46 Citations
- Liu Xinhao, Hu Jiajun, Xiong Guiyan, Cundy Andrew et al. (2025-12)
Long-Term Durability and Degradation Mechanisms of 3D Printed Geopolymers (3DPG) With/Without Healing Agents in Marine Environments - Sikora Paweł, Federowicz Karol, Skibicki Szymon, Techman Mateusz et al. (2025-11)
Demonstration of 3D-Printed Concrete Containing Fine Recycled Concrete Aggregates and Recycled Concrete Powder:
Rheology, Early-Age, Shrinkage, Mechanical, and Durability Performance. - Raza Ali, Tan Binglin, Jiajia Zhou, Umar Muhammad et al. (2025-11)
Evaluation of Mechanical and Microstructural Properties of Sustainable 3D-Printed Engineered Cementitious Composites Incorporating Hybrid PE/PVA Fibers and Yellow River Sand - Crook Thomas, Li Matthew, Buswell Richard, Allinson David (2025-10)
Anisotropic Hygrothermal Properties of 3D Printed Concrete - Xing Wenjing, Li Zhengrong (2025-09)
Quantifying the Heterogeneous Anisotropic Thermal Performance of Extrusion-Based 3D Printed Structures:
A Multiscale Computational Approach - Sikora Paweł, Skibicki Szymon, Bielawski Jakub, Techman Mateusz et al. (2025-09)
Elevated Temperature Response and Fire Resistance Considerations of 3D-Printed Concrete:
Small- to Medium-Scale Wall Experiments - Ozturk Onur, Lunsford Caleb, Strait James, Nair Sriramya (2025-08)
Breaking Barriers in Underwater Construction:
A Two-Stage 3D Printing System with On-Demand Material Adaptation - Goel Devansh, Kore Sudarshan (2025-07)
Mapping the Bibliometric Progression of 3D Concrete Printing:
A Concise Review - Bradshaw James, Si Wen, Khan Mehran, McNally Ciaran (2025-07)
Emerging Insights into the Durability of 3D-Printed Concrete:
Recent Advances in Mix Design Parameters and Testing - Kaur Zinnia, Goyal Shweta, Kwatra Naveen, Bera Tarun (2025-07)
Pore Structure Analysis and Durability Performance of Sustainable 3D Printed Concrete Incorporating Fly Ash and Limestone Calcined Clay Based Binders - Du Shizhao, Kang Chunxia, Du Xiuli (2025-06)
Fatigue Performance of 3D Printed Reusable Concrete Slabs for Temporary Pavements - Kuang Hao, Deng Yang, Wang Dong, Jian Shouwei et al. (2025-05)
Strengthening Effect of In-Situ Sprayed UV-Curable Polyurethane-Acrylate Resin Coating on Slag-Based 3D Printing Concrete - Mishra Sanjeet, Snehal K., Das B., Chandrasekaran Rajasekaran et al. (2025-05)
From Printing to Performance:
A Review on 3D Concrete Printing Processes, Materials, and Life Cycle Assessment - Rudziewicz Magdalena, Hutyra Adam, Maroszek Marcin, Korniejenko Kinga et al. (2025-04)
3D-Printed Lightweight Foamed Concrete with Dispersed Reinforcement - Liu Junli, Hai Hoang, Tran Mien, Tran Jonathan (2025-04)
Advancing Microstructural Insights in 3D-Printed Cementitious Materials via X-Ray Micro-Computed Tomography - Mortada Youssef, Hammoud Ahmad, Masoud Laith, Wyrzykowski Mateusz et al. (2025-02)
3D Printable Ca(OH)2-Based Geopolymer Concrete with Steel Fiber Reinforcement - Yasin Mazhar, Siddiqi Zahid, Ur Rehman Atteq, Noshin Sadaf et al. (2024-11)
Innovative Early-Age Mechanical Properties of 3D Printable Mortar Enhanced with SBR-Latex and Kaolin - Skibicki Szymon, Dvořák Richard, Pazdera Luboš, Topolář Libor et al. (2024-11)
Anisotropic Mechanical Properties of 3D Printed Mortar Determined by Standard Flexural and Compression-Test and Acoustic Emission - Nienaber Linda, Kanyenze Simba, Combrinck Riaan (2024-11)
Water Absorption Reduction of 3D Printed Concrete Using Silicones - Baytak Tugba, Gdeh Tawfeeq, Jiang Zhangfan, Arce Gabriel et al. (2024-09)
Rheological, Mechanical, and Environmental Performance of Printable Graphene-Enhanced Cementitious Composites with Limestone and Calcined Clay - Rider Bo, Kurtis K., Stewart L. (2024-09)
Quantification of Porosity and Sorptivity in Fiber-Reinforced 3D Printed Mortar:
Connecting Material-Composition and Structural Performance - Yoshihara Rei, Hashimoto Katsufumi, Sugiyama Takafumi, Nakase Kota (2024-09)
Development and Validation of Finite-Element-Constitutive-Model for Meso-Scale Compressive Fracture Behavior of 3D Printed Mortar - Sovetova Meruyert, Kaiser Calautit John (2024-08)
Thermal and Energy Efficiency in 3D Printed Buildings:
Review of Geometric Design, Materials and Printing Processes - Ler Kee-Hong, Ma Chau-Khun, Chin Chee-Long, Ibrahim Izni et al. (2024-08)
Porosity and Durability Tests on 3D Printing Concrete:
A Review - Tittelboom Kim, Mohan Dhanesh, Šavija Branko, Keita Emmanuel et al. (2024-08)
On the Micro-and Meso-Structure and Durability of 3D Printed Concrete Elements - Givkashi Mohammad, Tohidloo Mohammad (2024-07)
The Effect of Freeze-Thaw-Cycles and Sulfuric-Acid-Attack Separately on the Compressive Strength and Microstructure of 3D Printed Air-Entrained Concrete - Sovetova Meruyert, Calautit John (2024-07)
Influence of Printing Parameters on the Thermal Properties of 3D Printed Construction Structures - Liu Zhenbang, Li Mingyang, Wong Teck, Tan Ming (2024-05)
Determine the Effects of Pore Properties on the Mechanical Performances of 3D Concrete Printing Units with Experimental and Numerical Methods - Khan Mehran, McNally Ciaran (2024-05)
Recent Developments on Low-Carbon 3D Printing Concrete:
Revolutionizing Construction Through Innovative Technology - Chen Anguo, Dai Pengfei, Lyu Qifeng (2024-05)
Effect of Alkalized Straw-Fibers on the Properties of Three Dimensional Printed Cementitious Composite - Skibicki Szymon, Szewczyk Piotr, Majewska Julia, Sibera Daniel et al. (2024-03)
The Effect of Inter-Layer Adhesion on Stress-Distribution in 3D Printed Beam Elements - Wang Xiaonan, Li Wengui, Guo Yipu, Kashani Alireza et al. (2024-02)
Concrete 3D Printing Technology in Sustainable Construction:
A Review on Raw Materials, Concrete Types and Performances - Noaimat Yazeed, Chougan Mehdi, Albar Abdulrahman, Skibicki Szymon et al. (2023-10)
Recycled Brick-Aggregates in One-Part Alkali-Activated Materials:
Impact on 3D Printing Performance and Material-Properties - Overmeir Anne, Šavija Branko, Bos Freek, Schlangen Erik (2023-09)
Effects of 3D Concrete Printing Phases on the Mechanical Performance of Printable Strain-Hardening Cementitious Composites - Federowicz Karol, Techman Mateusz, Skibicki Szymon, Chougan Mehdi et al. (2023-08)
Development of 3D Printed Heavyweight Concrete Containing Magnetite-Aggregate - Zhu Lingli, Zhang Meng, Zhang Yaqi, Yao Jie et al. (2023-07)
Research Progress on Shrinkage Properties of Extruded 3D Printed Cement-Based Materials - Tao Yaxin, Dai Xiaodi, Schutter Geert, Tittelboom Kim (2023-06)
Set-on-Demand of Alkali-Activated Slag Mixture Using Twin-Pipe Pumping - Lyu Qifeng, Dai Pengfei, Chen Anguo (2023-05)
Sandwich-Structured Porous Concrete Manufactured by Mortar-Extrusion and Aggregate-Bed 3D Printing - Mujeeb Syed, Samudrala Manideep, Lanjewar Bhagyashri, Chippagiri Ravijanya et al. (2023-05)
Development of Alkali-Activated 3D Printable Concrete:
A Review - Mohan Manu, Rahul Attupurathu, Stappen Jeroen, Cnudde Veerle et al. (2023-05)
Assessment of Pore-Structure Characteristics and Tortuosity of 3D Printed Concrete Using Mercury-Intrusion-Porosimetry and X-Ray Tomography - Gupta Shashank, Esmaeeli Hadi, Prihar Arjun, Ghantous Rita et al. (2023-04)
Fracture- and Transport-Analysis of Heterogeneous 3D Printed Lamellar Cementitious Materials - Basha Shaik, Rehman Atta, Aziz Md, Kim Jung-Hoon (2023-02)
Cement Composites with Carbon-Based Nanomaterials for 3D Concrete Printing Applications:
A Review - Zhang Yu, Zhang Yunsheng, Yang Lin, Liu Guojian et al. (2022-12)
Influence of the Pore Feature on the Water-Uptake in 3D Printed Concrete - Kan Deyuan, Liu Guifeng, Cao Shuang, Chen Zhengfa et al. (2022-11)
Mechanical Properties and Pore-Structure of Multi-Walled Carbon-Nano-Tube-Reinforced Reactive Powder-Concrete for Three-Dimensional Printing Manufactured by Material-Extrusion - Che Yujun, Yang Huashan (2022-10)
Hydration Products, Pore-Structure, and Compressive Strength of Extrusion-Based 3D Printed Cement-Pastes Containing Nano-Calcium-Carbonate - Spuriņa Ella, Šinka Māris, Ziemelis Krists, Vanags Andris et al. (2022-09)
The Effects of Air-Entraining Agent on Fresh and Hardened Properties of 3D Concrete
BibTeX
@article{siko_tech_fede_khay.2022.IitMaDCo3PC,
author = "Paweł Sikora and Mateusz Techman and Karol Federowicz and Ahmed M. El Khayatt and H. A. Saudi and Mohamed Abd Elrahman and Marcin Hoffmann and Dietmar Stephan and Sang-Yeop Chung",
title = "Insight into the Microstructural and Durability Characteristics of 3D Printed Concrete: Cast versus Printed Specimens",
doi = "10.1016/j.cscm.2022.e01320",
year = "2022",
journal = "Case Studies in Construction Materials",
volume = "17",
}
Formatted Citation
P. Sikora, “Insight into the Microstructural and Durability Characteristics of 3D Printed Concrete: Cast versus Printed Specimens”, Case Studies in Construction Materials, vol. 17, 2022, doi: 10.1016/j.cscm.2022.e01320.
Sikora, Paweł, Mateusz Techman, Karol Federowicz, Ahmed M. El Khayatt, H. A. Saudi, Mohamed Abd Elrahman, Marcin Hoffmann, Dietmar Stephan, and Sang-Yeop Chung. “Insight into the Microstructural and Durability Characteristics of 3D Printed Concrete: Cast Versus Printed Specimens”. Case Studies in Construction Materials 17 (2022). https://doi.org/10.1016/j.cscm.2022.e01320.