Development of CO2-Integrated 3D Printing Concrete (2023-11)¶
10.1016/j.conbuildmat.2023.134233
, Hao Lucen, Li Xiao-Sheng, , Zhang Shipeng, Poon Chi
Journal Article - Construction and Building Materials, Vol. 409, No. 134233
Abstract
3D printing concrete (3DPC) technology is a promising technique for construction due to its advantages such as no formwork is needed, fast production, automation, and high architectural freedom. However, the layer-by-layer extrusion method has stricter requirements on the rheological properties of concrete. One of challenges of this technology is how to improve the rheological properties of concrete to satisfy the conflicting requirements during pumping and after extrusion. This study proposed to use CO2 as accelerator and rheology modifier by injecting CO2 during secondary mixing to improve the rheological and mechanical properties of 3DPC. The influences of the secondary CO2 mixing on the properties of poured concrete and 3DPC were investigated. After using the secondary CO2 mixing, the setting time and workability of concrete were reduced, which contributed to the significantly improved buildability of 3DPC. This was because CO2 accelerated the hydration of tricalcium aluminate (C3A) and tricalcium silicate (C3S) during the secondary mixing. After that, they were continuously accelerated by the calcium carbonate formed during CO2 mixing. Also, the compressive strength of poured concrete was enhanced by the secondary CO2 mixing because it reduced the volume of larger pores (>200 nm) and promoted the formation of calcium silicate hydrates (C-S-H), which simultaneously slightly increased the drying shrinkage. In addition, after using the secondary CO2 mixing, the compressive strength and interlayer bond strength of 3DPC was enhanced.
¶
19 References
- Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
3D Printing Using Concrete-Extrusion:
A Roadmap for Research - Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
Large-Scale 3D Printing of Ultra-High-Performance Concrete:
A New Processing Route for Architects and Builders - Heras Murica Daniel, Genedy Moneeb, Taha Mahmoud (2020-09)
Examining the Significance of Infill-Printing-Pattern on the Anisotropy of 3D Printed Concrete - Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
A Review of 3D Printed Concrete:
Performance-Requirements, Testing Measurements and Mix-Design - Keita Emmanuel, Bessaies-Bey Hela, Zuo Wenqiang, Belin Patrick et al. (2019-06)
Weak Bond Strength Between Successive Layers in Extrusion-Based Additive Manufacturing:
Measurement and Physical Origin - Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
An Ab-Inito Approach for Thixotropy Characterisation of Nano-Particle-Infused 3D Printable Concrete - Liu Chao, Wang Xianggang, Chen Yuning, Zhang Chao et al. (2021-06)
Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete - Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2020-09)
Effect of Microwave-Heating on Inter-Layer Bonding and Buildability of Geopolymer 3D Concrete Printing - Qian Ye, Schutter Geert (2018-06)
Enhancing Thixotropy of Fresh Cement-Pastes with Nano-Clay in Presence of Polycarboxylate-Ether Superplasticizer (PCE) - Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
3D Printable Concrete:
Mixture-Design and Test-Methods - Ramakrishnan Sayanthan, Kanagasuntharam Sasitharan, Sanjayan Jay (2022-05)
In-Line Activation of Cementitious Materials for 3D Concrete Printing - Reiter Lex, Wangler Timothy, Anton Ana-Maria, Flatt Robert (2020-05)
Setting-on-Demand for Digital Concrete:
Principles, Measurements, Chemistry, Validation - Vaitkevičius Vitoldas, Šerelis Evaldas, Kerševičius Vidas (2018-03)
Effect of Ultra-Sonic Activation on Early Hydration Process in 3D Concrete Printing Technology - Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
Digital Concrete:
A Review - Weng Yiwei, Lu Bing, Li Mingyang, Liu Zhixin et al. (2018-09)
Empirical Models to Predict Rheological Properties of Fiber-Reinforced Cementitious Composites for 3D Printing - Xiao Jianzhuang, Zou Shuai, Yu Ying, Wang Yu et al. (2020-09)
3D Recycled Mortar Printing:
System-Development, Process-Design, Material-Properties and On-Site-Printing - Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
Mix-Design Concepts for 3D Printable Concrete:
A Review - Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
Fresh Properties of a Novel 3D Printing Concrete Ink - Zou Shuai, Xiao Jianzhuang, Duan Zhenhua, Ding Tao et al. (2021-10)
On Rheology of Mortar with Recycled Fine Aggregate for 3D Printing
18 Citations
- Dao Trang, Chau Vinh, Tran Jonathan, Tran Mien (2026-01)
Balancing Workability, Buildability, and Carbon Sequestration in 3D Printed Concrete via Direct CO2 Mineralization - Paul Suvash, Lee Junghyun, Tay Yi, Amr Issam et al. (2025-12)
Developing Sustainable 3D Printable Concrete Materials Using Olivine Sand for Carbon Sequestration - Lim Sean, Lee Junghyun, Bawarith Nuran, Paul Suvash et al. (2025-11)
The Efficacy of Self-Curing Agents on Enhanced Internal Curing and Accelerated Carbonation with CO2-Steam Integrated 3D Concrete Printing - Liu Junli, Zhang Shipeng, Hao Lucen, Wu Bo et al. (2025-10)
Rapid Rheology Control and Stiffening of 3D-Printed Cement Mortar via CO2 Flash Mixing in a 2K Printing System - Xiao Jianzhuang, He Yao, Yu Miao, Wang Changhao et al. (2025-10)
Effects of Pressurized CO2 Mixing on the Properties of Mortar - Anwar Muhammad, Zhu Xingyi, Zhang Yating, Wang Jiakang et al. (2025-09)
Synergistic Effects of Microwave Curing Regimes on Early, Mid, and Long-Term Strengths and Microstructural Performance of Fly Ash-Slag Based 3D-Printed Geopolymers - Li Qiyan, Su Anshuang, Gao Xiaojian (2025-06)
Improvement of Interlayer Performance of 3D Printable Magnesium Oxysulfate Cement-Based Materials by Carbonation Curing - Li Long, Ji Weiyi, Xiao Jianzhuang, Xiao Jie et al. (2025-06)
Strategy for Improving Buildability of 3D Printing Concrete Using CO2 Mixing and Chemical Admixtures - Zhang Yuying, Zhu Xiaohong, Li Muduo, Zhang Chao et al. (2025-04)
3D Printing Technology in Concrete Construction - Li Qiyan, Wen Xiaodong, Gao Xiaojian (2025-02)
Rheological and Mechanical Properties of 3D-Printable Magnesium-Oxysulfate-Cements - Zhang Yonghong, Cui Suping, Wang Xinxin, Yang Bohao et al. (2025-01)
Microstructure and Performance of Recycled Wind Turbine Blade-Based 3D Printed Concrete - Kopitha Kirushnapillai, Rajeev Pathmanathan, Sanjayan Jay, Elakneswaran Yogarajah (2024-12)
CO2 Sequestration and Low-Carbon-Strategies in 3D Printed Concrete - Murali Gunasekaran, Leong Sing (2024-11)
Waste-Driven Construction:
A State of the Art Review on the Integration of Waste in 3D Printed Concrete in Recent Researches for Sustainable Development - Dong Enlai, Jia Zijian, Jia Lutao, Rao Suduan et al. (2024-10)
Modeling Fiber-Alignment in 3D Printed Ultra-High-Performance Concrete Based on Stereology-Theory - Shivendra Bandoorvaragerahalli, Sharath Chandra Sathvik, Singh Atul, Kumar Rakesh et al. (2024-09)
A Path Towards SDGs:
Investigation of the Challenges in Adopting 3D Concrete Printing in India - Ler Kee-Hong, Ma Chau-Khun, Chin Chee-Long, Ibrahim Izni et al. (2024-08)
Porosity and Durability Tests on 3D Printing Concrete:
A Review - Hutyra Adam, Bańkosz Magdalena, Tyliszczak Bożena (2024-08)
Technology for Automated Production of High-Performance Building Compounds for 3D Printing - Şahin Hatice, Mardani Ali, Beytekin Hatice (2024-02)
Effect of Silica-Fume Utilization on Structural Build-Up, Mechanical and Dimensional Stability Performance of Fiber-Reinforced 3D Printable Concrete
BibTeX
@article{li_hao_li_xiao.2023.DoCI3PC,
author = "Long Li and Lucen Hao and Xiao-Sheng Li and Jianzhuang Xiao and Shipeng Zhang and Chi Sun Poon",
title = "Development of CO2-Integrated 3D Printing Concrete",
doi = "10.1016/j.conbuildmat.2023.134233",
year = "2023",
journal = "Construction and Building Materials",
volume = "409",
pages = "134233",
}
Formatted Citation
L. Li, L. Hao, X.-S. Li, J. Xiao, S. Zhang and C. S. Poon, “Development of CO2-Integrated 3D Printing Concrete”, Construction and Building Materials, vol. 409, p. 134233, 2023, doi: 10.1016/j.conbuildmat.2023.134233.
Li, Long, Lucen Hao, Xiao-Sheng Li, Jianzhuang Xiao, Shipeng Zhang, and Chi Sun Poon. “Development of CO2-Integrated 3D Printing Concrete”. Construction and Building Materials 409 (2023): 134233. https://doi.org/10.1016/j.conbuildmat.2023.134233.