Skip to content

Bauxite Residue-Based 3D Printing Mortar (2025-09)

Enhancing Performance and Sustainability Through the Paste Replacement Approach

10.1016/j.conbuildmat.2025.143340

 Li Leo, Fei Zuojie, Jiao Chujie,  Luo Tao, He Lewei, Zheng Tongjing
Journal Article - Construction and Building Materials, Vol. 494, No. 143340

Abstract

Produced in massive quantities across the world, bauxite residue (BR) is an underutilized solid waste with serious environmental implications. Aiming for more efficient BR utilization, this study introduces a paste replacement approach into 3D printing mortar for the first time. In this approach, BR replaces part of the paste (water + cement) without changing the water-to-cement ratio, and a water reducer is used to regulate the mixture’s workability. The results indicate that BR-based mortars achieve optimal printability metrics based on this approach. Concurrently, the use of BR as a paste replacement demonstrates multifaceted enhancements, including strength improvement (up to 16.8 %), refined packing density, optimized microstructure, and accelerated hydration kinetics, while achieving significant reductions in cement consumption (maximum 10.0 %) and carbon emissions (peak reduction 9.6 %). Mechanistically, these benefits originate from the synergistic interplay between lowered equivalent water-to-cement ratio, enhanced packing density, and precise water reducer dosage control. Furthermore, the cementing efficiency factor of BR was determined to be 0.739, and a high-precision model for compressive strength was formulated. Finally, the proposed eco-efficiency indices (strength-cement ratio, strength-carbon ratio and strength-cost ratio) collectively validate that the paste replacement strategy provides a scalable technical pathway for productive utilization of industrial solid wastes and development of environmentally-friendly, economical construction materials.

44 References

  1. Babafemi Adewumi, Kolawole John, Miah Md, Paul Suvash et al. (2021-06)
    A Concise Review on Inter-Layer Bond Strength in 3D Concrete Printing
  2. Baktheer Abedulgader, Claßen Martin (2024-07)
    A Review of Recent Trends and Challenges in Numerical Modeling of the Anisotropic Behavior of Hardened 3D Printed Concrete
  3. Cao Xiangpeng, Yu Shiheng, Zheng Dapeng, Cui Hongzhi (2022-06)
    Nail-Planting to Enhance the Interface Bonding Strength in 3D Printed Concrete
  4. Chen Yu, Jansen Koen, Zhang Hongzhi, Rodríguez Claudia et al. (2020-07)
    Effect of Printing-Parameters on Inter-Layer Bond Strength of 3D Printed Limestone-Calcined-Clay-Based Cementitious Materials:
    An Experimental and Numerical Study
  5. Chen Yu, Li Zhenming, Figueiredo Stefan, Çopuroğlu Oğuzhan et al. (2019-04)
    Limestone and Calcined-Clay-Based Sustainable Cementitious Materials for 3D Concrete Printing:
    A Fundamental Study of Extrudability and Early-Age Strength Development
  6. Dell’Endice Alessandro, Bouten Sam, Mele Tom, Block Philippe (2023-07)
    Structural Design and Engineering of Striatus, an Unreinforced 3D Concrete Printed Masonry Arch Bridge
  7. Dey Dhrutiman, Srinivas Dodda, Panda Biranchi, Suraneni Prannoy et al. (2022-02)
    Use of Industrial Waste-Materials for 3D Printing of Sustainable Concrete:
    A Review
  8. Ding Tao, Xiao Jianzhuang, Zou Shuai, Wang Yu (2020-06)
    Hardened Properties of Layered 3D Printed Concrete with Recycled Sand
  9. Giwa Ilerioluwa, Dempsey Mary, Fiske Michael, Kazemian Ali (2024-06)
    3D Printed Sulfur-Regolith Concrete Performance Evaluation for Waterless Extraterrestrial Robotic Construction
  10. Han Kang, Gu Fei, Yang Huashan, Tian Xinchen et al. (2024-09)
    PVA-Fiber-Reinforced Red Mud-Based Geopolymer for 3D Printing:
    Printability, Mechanical Properties and Microanalysis
  11. He Lewei, Pan Jiahui, Hee Yu, Chen Hao et al. (2024-09)
    Development of Novel Concave and Convex Trowels for Higher Inter-Layer Strength of 3D Printed Cement-Paste
  12. Hou Shaodan, Duan Zhenhua, Ye Taohua, Zou Shuai et al. (2023-06)
    Mechanical Properties and Pore-Structure of 3D Printed Mortar with Recycled Powder
  13. Joh Changbin, Lee Jungwoo, Bui The, Park Jihun et al. (2020-11)
    Buildability and Mechanical Properties of 3D Printed Concrete
  14. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  15. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  16. Li L., Fang Z., Chu S., Kwan Albert (2024-11)
    Improving Mechanical Properties of 3D Printed Mortar by Exploiting Synergistic Effects of Fly-Ash-Microsphere and Nano-Silica
  17. Li Leo, Xiao Bofeng, Cheng Cong-Mi, Xie Hui-Zhu et al. (2023-09)
    Adding Glass-Fibers to 3D Printable Mortar:
    Effects on Printability and Material-Anisotropy
  18. Li Leo, Xiao Bofeng, Fang Z., Xiong Z. et al. (2020-11)
    Feasibility of Glass-Basalt Fiber-Reinforced Seawater Coral Sand Mortar for 3D Printing
  19. Li Leo, Zhang Guang-Hu (2024-08)
    Feasibility of Underwater 3D Printing:
    Effects of Anti-Washout-Admixtures on Printability and Strength of Mortar
  20. Li Leo, Zhang Guang-Hu, Kwan Albert (2025-01)
    Exploring Submarine 3D Printing:
    Enhancing Washout-Resistance and Strength of 3D Printable Mortar
  21. Liu Xuan, Chen Xianrui, Leung Gordon, Sham Ivan (2024-07)
    3D Printable Low-Carbon Concrete with Nano-Silica Pretreated Recycled Fine Aggregates
  22. Liu Zhixin, Li Mingyang, Weng Yiwei, Wong Teck et al. (2018-12)
    Mixture-Design-Approach to Optimize the Rheological Properties of the Material Used in 3D Cementitious Material-Printing
  23. Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-09)
    3D Printing Concrete with Recycled Coarse Aggregates:
    The Influence of Pore-Structure on Inter-Layer Adhesion
  24. Liu Chao, Wang Xianggang, Chen Yuning, Zhang Chao et al. (2021-06)
    Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete
  25. Liu Chao, Zhang Yukun, Liu Huawei, Wu Yiwen et al. (2024-10)
    Inter-Layer Reinforced 3D Printed Concrete with Recycled Coarse Aggregate:
    Shear Properties and Enhancement Methods
  26. Ma Guowei, Zhang Junfei, Wang Li, Li Zhijian et al. (2018-06)
    Mechanical Characterization of 3D Printed Anisotropic Cementitious Material by the Electromechanical Transducer
  27. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2018-11)
    Improving the 3D Printability of High-Volume Fly-Ash Mixtures via the Use of Nano-Attapulgite-Clay
  28. Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
    Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing
  29. Pasupathy Kirubajiny, Ramakrishnan Sayanthan, Sanjayan Jay (2023-01)
    3D Concrete Printing of Eco-Friendly Geopolymer Containing Brick Waste
  30. Pessoa Ana Sofia, Guimarães Ana, Lucas Sandra, Simões Nuno (2021-02)
    3D Printing in the Construction Industry:
    A Systematic Review of the Thermal Performance in Buildings
  31. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
    3D Printable Concrete:
    Mixture-Design and Test-Methods
  32. Seo Eun-A, Kim Won-Woo, Kim Sung-Wook, Kwon Hongkyu et al. (2023-03)
    Mechanical Properties of 3D Printed Concrete with Coarse Aggregates and Polypropylene-Fiber in the Air and Underwater Environment
  33. Shen Kaige, Ding Tao, Cai Chen, Xiao Jianzhuang et al. (2024-09)
    Feasibility-Analysis of 3D Printed Concrete with Sludge-Incineration-Slag:
    Mechanical Properties and Environmental Impacts
  34. Sun Xiaoyan, Wang Qun, Wang Hailong, Chen Long (2020-03)
    Influence of Multi-Walled Nanotubes on the Fresh and Hardened Properties of a 3D Printing PVA Mortar Ink
  35. Tu Haidong, Wei Zhenyun, Bahrami Alireza, Kahla Nabil et al. (2023-06)
    Recent Advancements and Future Trends in 3D Printing Concrete Using Waste-Materials
  36. Wang Li, Tian Zehao, Ma Guowei, Zhang Mo (2020-02)
    Inter-Layer Bonding Improvement of 3D Printed Concrete with Polymer-Modified Mortar:
    Experiments and Molecular Dynamics Studies
  37. Wang Jun, Zhang Xuanzheng, Liu Zhenhua, Zhao Jiasheng (2024-07)
    Study on the Effects of Printing Process and Reinforcement Materials on the Performance of 3D-Printed Glass Bead Insulation Mortar
  38. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  39. Xia Kailun, Chen Yuning, Chen Yu, Jia Zijian et al. (2024-04)
    Understanding and Modeling the Plastic Deformation of 3D Printed Concrete Based on Viscoelastic Creep Behavior
  40. Xiao Jianzhuang, Zou Shuai, Ding Tao, Duan Zhenhua et al. (2021-08)
    Fiber-Reinforced Mortar with 100% Recycled Fine Aggregates:
    A Cleaner Perspective on 3D Printing
  41. Yan Ruizhen, Meng Fangqi, Ke Guoju, Jia Kerui (2024-08)
    Comparative Evaluation of the Applicability of 3D Printing Mortar with Different Waste-Powders
  42. Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
    Fresh Properties of a Novel 3D Printing Concrete Ink
  43. Zhou Longfei, Gou Mifeng, Ji Jiankai, Hou Xinran et al. (2024-02)
    Durability and Hardened Properties of 3D Printed Concrete Containing Bauxite-Tailings
  44. Zhou Longfei, Gou Mifeng, Zhang Haibo, Hama Yukio (2024-12)
    Investigation of Activated Bauxite-Tailings for Application in 3D Printed Concrete via a Modified Anderson and Anderson-Model

0 Citations

BibTeX
@article{li_fei_jiao_luo.2025.BRB3PM,
  author            = "Leo Gu Li and Zuojie Fei and Chujie Jiao and Tao Luo and Lewei He and Tongjing Zheng",
  title             = "Bauxite Residue-Based 3D Printing Mortar: Enhancing Performance and Sustainability Through the Paste Replacement Approach",
  doi               = "10.1016/j.conbuildmat.2025.143340",
  year              = "2025",
  journal           = "Construction and Building Materials",
  volume            = "494",
  pages             = "143340",
}
Formatted Citation

L. G. Li, Z. Fei, C. Jiao, T. Luo, L. He and T. Zheng, “Bauxite Residue-Based 3D Printing Mortar: Enhancing Performance and Sustainability Through the Paste Replacement Approach”, Construction and Building Materials, vol. 494, p. 143340, 2025, doi: 10.1016/j.conbuildmat.2025.143340.

Li, Leo Gu, Zuojie Fei, Chujie Jiao, Tao Luo, Lewei He, and Tongjing Zheng. “Bauxite Residue-Based 3D Printing Mortar: Enhancing Performance and Sustainability Through the Paste Replacement Approach”. Construction and Building Materials 494 (2025): 143340. https://doi.org/10.1016/j.conbuildmat.2025.143340.