Skip to content

Integrating Prestress into 3D Printed Ultra-High Performance Concrete Composite Beams for Superior Flexural Performance (2025-09)

10.1016/j.engstruct.2025.121255

Bai Gang,  Wang Li,  Li Zhijian, Qu Yao,  Ma Guowei
Journal Article - Engineering Structures, Vol. 343, No. 121255

Abstract

The high-performance flexural capacity of 3D printed concrete structures (3DPS) without steel reinforcement cages has become a central focus in construction 3D printing technology. Previous studies have found that combining 3D printed ultra-high performance concrete (3DP-UHPC) skeletons with single steel bars is an effective alternative method to traditional reinforcement cages. To further enhance the flexural capacity of 3DPS, this study proposes a form-force coupling method using 3DP-UHPC skeletons and prestressing to enhance cage-free 3D printed structures. The bending performance of prestressed 3D printed concrete composite beams (P-CRC) is evaluated. Key assessments include monitoring the prestress tensioning process, measuring short-term prestress loss, and analyzing the cracking load, ultimate load-bearing capacity, failure modes, and strain of P-CRC beams. Results show that P-CRC beams exhibit significantly superior performance compared to reinforced concrete beam. Their cracking load is nearly 6 times higher than that of RC beam, and it approaches the ultimate load of reinforced concrete beam. The ultimate load-bearing capacity is increased by approximately 40 %, while flexural toughness is enhanced fivefold. These findings provide valuable experimental data and theoretical support for the broader adoption of 3D concrete printing, particularly in large-span applications.

34 References

  1. Asprone Domenico, Auricchio Ferdinando, Menna Costantino, Mercuri Valentina (2018-03)
    3D Printing of Reinforced Concrete Elements:
    Technology and Design Approach
  2. Bai Gang, Guan Jingyuan, Wang Li, Li Zhijian et al. (2024-07)
    Bending Performance of 3D Printed Ultra-High-Performance Concrete Composite Beams
  3. Bhushan Jindal Bharat, Jangra Parveen (2023-05)
    3D Printed Concrete:
    A Comprehensive Review of Raw Material’s Properties, Synthesis, Performance, and Potential Field Applications
  4. Breseghello Luca, Hajikarimian Hamed, Jørgensen Henrik, Naboni Roberto (2023-07)
    3DLightBeam+:
    Design, Simulation, and Testing of Carbon-Efficient Reinforced 3D Concrete Printed Beams
  5. Coward Andy, Sørensen Jesper (2023-12)
    3D Printed Concrete Beams as Optimised Load Carrying Structural Elements:
    The Minimass Beam
  6. Dell’Endice Alessandro, Bouten Sam, Mele Tom, Block Philippe (2023-07)
    Structural Design and Engineering of Striatus, an Unreinforced 3D Concrete Printed Masonry Arch Bridge
  7. Ding Tao, Peng Zechen, Dong Haining (2025-05)
    Mechanical Properties of CFRP Grid Reinforced 3D Printed Concrete Arch Structures
  8. Dong Enlai, Yuan Hanquan, Chen Yu, Jia Lutao et al. (2025-01)
    Printing Large-Size Eggshell-Shaped Elements with Ultra-High-Performance Concrete:
    From Material-Design to Structural Bearing-Capacity-Assessment
  9. Gebhard Lukas, Mata-Falcón Jaime, Anton Ana-Maria, Dillenburger Benjamin et al. (2021-04)
    Structural Behavior of 3D Printed Concrete Beams with Various Reinforcement-Strategies
  10. Guan Jingyuan, Wang Li, Huang Yimiao, Ma Guowei (2024-12)
    3D Printed Concrete Composite Slabs Fabricated by Pre-Stressed Reinforced Permanent Formwork:
    Design, Manufacturing, and Performance
  11. Guan Jingyuan, Wang Li, Wan Qian, Ma Guowei (2025-01)
    Material and Structural Fatigue-Performance of 18m Span Reinforced Arch Structure Manufactured by 3D Printing Concrete as Permanent Formwork
  12. Haar Bjorn, Kruger Jacques, Zijl Gideon (2024-04)
    Off-Site 3D Printed Concrete Beam Design and Fabrication
  13. Hasani Alireza, Dorafshan Sattar (2024-06)
    Transforming Construction?:
    Evaluation of the State of Structural 3D Concrete Printing in Research and Practice
  14. Hassan Habibelrahman, Rodriguez-Ubinas Edwin, Tamimi Adil, Trepci Esra et al. (2024-04)
    Towards Innovative and Sustainable Buildings:
    A Comprehensive Review of 3D Printing in Construction
  15. Hojati Maryam, Memari Ali, Zahabi Mehrzad, Wu Zhengyu et al. (2022-06)
    Barbed-Wire Reinforcement for 3D Concrete Printing
  16. Hu Xiangcheng, Shazad Qamar, Li Fangyuan (2025-04)
    Influence of the Shear Span Ratio on the Shear Performance of 3D-Printed Concrete Beams Without Web Reinforcement
  17. Li Yu, Wu Hao, Xie Xinjie, Zhang Liming et al. (2024-02)
    FloatArch:
    A Cable-Supported, Unreinforced, and Re-Assemblable 3D Printed Concrete Structure Designed Using Multi-Material Topology-Optimization
  18. Liu Haoran, Xiao Jianzhuang, Ding Tao (2023-03)
    Flexural Performance of 3D Printed Composite Beams with ECC and Recycled Fine Aggregate Concrete:
    Experimental and Numerical Analysis
  19. Liu Dawei, Zhang Zhigang, Zhang Xiaoyue, Chen Zhaohui (2023-09)
    3D Printing Concrete Structures:
    State of the Art, Challenges, and Opportunities
  20. Ma Guowei, Bai Gang, Wang Li, Wang Fang (2022-07)
    Explosion-Resistance of 3D Printing Ultra-High-Performance Concrete Based on Contact-Explosion Tests
  21. Ma Guowei, Buswell Richard, Silva Wilson, Wang Li et al. (2022-03)
    Technology Readiness:
    A Global Snapshot of 3D Concrete Printing and the Frontiers for Development
  22. Maitenaz Sébastien, Mesnil Romain, Féraille Adélaïde, Caron Jean-François (2023-12)
    Materialising Structural Optimization of Reinforced Concrete Beams Through Digital Fabrication
  23. Mechtcherine Viktor, Tittelboom Kim, Kazemian Ali, Kreiger Eric et al. (2022-04)
    A Roadmap for Quality-Control of Hardening and Hardened Printed Concrete
  24. Nguyen Vuong, Choudhry Niranjan, Panda Biranchi, Nguyen-Xuan Hung et al. (2021-12)
    Performance of Concrete Beam Reinforced with 3D Printed Bio-Inspired Primitive Scaffold Subjected to Three-Point Bending
  25. Ramesh Akilesh, Rajeev Pathmanathan, Sanjayan Jay, Mechtcherine Viktor (2024-06)
    In-Process Textile Reinforcement Method for 3D Concrete Printing and Its Structural Performance
  26. Raza Saim, Sakha Mahsa, Hassan Zohaib, Manshadi Behzad et al. (2025-05)
    Flexural Behavior of Stay-in-Place Load-Bearing 3D-Printed Concrete Formwork for Ribbed Slabs
  27. Salet Theo, Ahmed Zeeshan, Bos Freek, Laagland Hans (2018-05)
    Design of a 3D Printed Concrete Bridge by Testing
  28. Vantyghem Gieljan, Corte Wouter, Shakour Emad, Amir Oded (2020-01)
    3D Printing of a Post-Tensioned Concrete Girder Designed by Topology-Optimization
  29. Wang Qiang, Yang Wenwei, Wang Li, Bai Gang et al. (2025-03)
    Reinforcement Design and Structural Performance for the Topology Optimized 3D Printed Concrete Truss Beams
  30. Yang Wenwei, Wang Li, Hu Yuanyuan, Sanjayan Jay et al. (2023-10)
    An Integrated Topology-Optimization Method Including Manufacturing-Constraints for 3D Printed Fiber-Reinforced Concrete Structures
  31. Yang Wenwei, Wang Li, Ma Guowei, Feng Peng (2023-06)
    An Integrated Method of Topological-Optimization and Path-Design for 3D Concrete Printing
  32. Zhang Daobo, Feng Peng, Zhou Peizhao, Xu Weiguo et al. (2023-06)
    3D Printed Concrete Walls Reinforced with Flexible FRP Textile:
    Automatic Construction, Digital Rebuilding, and Seismic Performance
  33. Zhao Zengfeng, Ji Chenyuan, Xiao Jianzhuang, Yao Lei et al. (2023-11)
    A Critical Review on Reducing the Environmental Impact of 3D Printing Concrete:
    Material-Preparation, Construction-Process and Structure-Level
  34. Zhu Binrong, Pan Jinlong, Zhou Zhenxin, Cai Jingming (2021-04)
    Mechanical Properties of Engineered Cementitious Composites Beams Fabricated by Extrusion-Based 3D

0 Citations

BibTeX
@article{bai_wang_li_qu.2025.IPi3PUHPCCBfSFP,
  author            = "Gang Bai and Li Wang and Zhijian Li and Yao Qu and Guowei Ma",
  title             = "Integrating Prestress into 3D Printed Ultra-High Performance Concrete Composite Beams for Superior Flexural Performance",
  doi               = "10.1016/j.engstruct.2025.121255",
  year              = "2025",
  journal           = "Engineering Structures",
  volume            = "343",
  pages             = "121255",
}
Formatted Citation

G. Bai, L. Wang, Z. Li, Y. Qu and G. Ma, “Integrating Prestress into 3D Printed Ultra-High Performance Concrete Composite Beams for Superior Flexural Performance”, Engineering Structures, vol. 343, p. 121255, 2025, doi: 10.1016/j.engstruct.2025.121255.

Bai, Gang, Li Wang, Zhijian Li, Yao Qu, and Guowei Ma. “Integrating Prestress into 3D Printed Ultra-High Performance Concrete Composite Beams for Superior Flexural Performance”. Engineering Structures 343 (2025): 121255. https://doi.org/10.1016/j.engstruct.2025.121255.