Skip to content

3D Printing Ultra-High-Performance Fiber-Reinforced Concrete under Triaxial Confining Loads (2021-12)

10.1016/j.addma.2021.102568

 Yang Yekai,  Wu Chengqing, Liu Zhongxian, Zhang Hai
Journal Article - Additive Manufacturing, Vol. 50

Abstract

3D-printing concrete structural members may experience complex stress states, while external reinforcement (wrapping steel tube or fiber-reinforced polymer) may be one of the effective ways to improve performance. Therefore, triaxial mechanical properties of 3D-printing concrete should be explored. This study presents an experimental investigation of the triaxial behavior of 3D-printing ultra-high performance fiber-reinforced concrete (3DP-UHPFRC) loaded in the Z-direction. Mold-casting ultra-high performance fiber reinforced concrete (MC-UHPFRC) was used as the reference specimen. Based on the test data, the failure mode and mechanical properties of the 3D-printing specimens were analyzed, and the failure criteria were explored. The experimental results showed that 3DP-UHPFRC possessed triaxial failure modes, mechanical properties, and failure criteria as MC-UHPFRC. All 3DP-UHPFRC specimens exhibited oblique shear cracks under triaxial compression. The fitting effect of Mohr-Coulomb failure criterion on 3D-printing specimens without steel fiber is poor (R2 is less than 0.9), which is due to the linear relationship of Mohr-Coulomb failure criterion and the obvious nonlinear increase in strength of 3D-printing specimens without steel fiber with the confining pressure, whereas the Power-law and Willam-Warnke failure criteria were good for all 3D-printing specimens. A modified model was established for predicting the stress-strain curves of 3DP-UHPFRC under triaxial confining pressure.

17 References

  1. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2020-10)
    Development of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete for Digital Construction
  2. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
    Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing
  3. Bos Freek, Kruger Jacques, Lucas Sandra, Zijl Gideon (2021-04)
    Juxtaposing Fresh Material-Characterisation-Methods for Buildability-Assessment of 3D Printable Cementitious Mortars
  4. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  5. Ding Tao, Xiao Jianzhuang, Zou Shuai, Zhou Xinji (2020-08)
    Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers
  6. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  7. Long Wujian, Tao Jie-Lin, Lin Can, Gu Yucun et al. (2019-08)
    Rheology and Buildability of Sustainable Cement-Based Composites Containing Micro-Crystalline Cellulose for 3D Printing
  8. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  9. Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
    Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing
  10. Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
    Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material
  11. Pham Luong, Tran Jonathan, Sanjayan Jay (2020-04)
    Steel-Fiber-Reinforced 3D Printed Concrete:
    Influence of Fiber Sizes on Mechanical Performance
  12. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  13. Wang Li, Ma Hui, Li Zhijian, Ma Guowei et al. (2021-07)
    Cementitious Composites Blending with High Belite-Sulfoaluminate and Medium-Heat Portland Cements for Large-Scale 3D Printing
  14. Wolfs Robert, Bos Freek, Salet Theo (2019-06)
    Triaxial Compression Testing on Early-Age Concrete for Numerical Analysis of 3D Concrete Printing
  15. Yang Yekai, Wu Chengqing, Liu Zhongxian, Wang Hailiang et al. (2021-10)
    Mechanical Anisotropy of Ultra-High-Performance Fiber-Reinforced Concrete for 3D Printing
  16. Yuan Qiang, Li Zemin, Zhou Dajun, Huang Tingjie et al. (2019-08)
    A Feasible Method for Measuring the Buildability of Fresh 3D Printing Mortar
  17. Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
    Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction

53 Citations

  1. Wang Xiangyu, Wang Sizhe, Deng North, Liu Zhenbang et al. (2026-01)
    Robotic Rebar Insertion and Grouting for Reinforcement of 3D Printed Concrete:
    Technique Development and Bond Behavior Characterization
  2. Shilar Fatheali, Shilar Mubarakali (2025-12)
    Performance-Based Analysis of 3D Printed Geopolymers Relating Durability, Microstructure, and Life Cycle Assessment
  3. Tong Zhongling, Guan Qingtao, Elabbasy Ahmed, Ateah Ali et al. (2025-12)
    Empowering 3D Printed Concrete:
    Discovering the Impact of Steel Fiber Reinforcement on Mechanical Performance
  4. Wen Kuo-Wei, Su Yen-Fang, Mo Kim, Hung Chung-Chan (2025-12)
    Time-Dependent Rheology, Green Strength, and Buildability of 3D-Printed Ultra-High Performance Concrete Incorporating Various Fiber Types and Contents
  5. Liao Minmao, Gerong Wangdui, Wang Pengfei, Chen Zhaohui (2025-08)
    Determination of Elastic Engineering Constants in an Orthotropic Constitutive Model for Hardened 3D-Printed Concrete
  6. Jalil Siti Nur Natasha Abdul, Rizal Alias Ahmad, Alias Aizat (2025-06)
    Challenges and Strategies in Implementing 3D Concrete Printing (3DCP) Technology in Malaysia:
    Materials and Design Codes
  7. Ding Tao, Qu Changwei, Guo Dingming (2025-06)
    Thermal and Mechanical Properties of 3D Printed Functionally Graded Concrete:
    Utilizing Fibers and Recycled Aggregates as Gradient Components
  8. Sarıkaya M., Benam Shaghayegh, Yılmaz Taner, Erkmen Bülent et al. (2025-05)
    Seismic Performance Assessment of 3D-Printed Concrete Structures
  9. Asif Usama (2025-05)
    Comparative Analysis of Evolutionary Computational Methods for Predicting Mechanical Properties of Fiber-Reinforced 3D Printed Concrete
  10. Yang Shutong, Chen Zhengyuan, Lan Tian, Yang Tiange (2025-05)
    Quantitative Evaluation for Fracture Properties of 3D Printed Ultra-High-Performance Concrete Loaded in Different Directions
  11. Wang Guihua, Zhou Jiguo, Liu Haoyun, Zhang Jianming (2025-05)
    Rheological Properties and Mechanical Durability of 3D-Printed Concrete Based on Low-Field NMR
  12. Yang Guojun, Weng Yiwei, Tian Jiefu, Yang Zhenjun (2025-05)
    3D Printing Towards Cost-Effective Design of Composite UHPFRC Beams:
    Effects of Fiber Distribution and Orientation on Flexural Performances and Failure Mode Transition
  13. Dabbaghisouraki Farshad, Tanhadoust Amin, Nehdi Moncef (2025-04)
    Fiber Reinforcement Strategies in 3D Concrete Printing:
    Addressing Challenges and Identifying Research Gaps
  14. Du Guoqiang, Sun Yan, Qian Ye (2025-03)
    In-Plane and Out-of-Plane Compressive Performance of Bio-Inspired 3D Printed Strain-Hardening Cementitious Composite Lattice Structures
  15. Yuan Hanquan, Dong Enlai, Jia Zijian, Jia Lutao et al. (2025-03)
    The Influence of Pore Structure and Fiber Orientation on Anisotropic Mechanical Property of 3D Printed Ultra-High-Performance Concrete
  16. Engel Sven, Hegger Josef, Claßen Martin (2025-02)
    Multimodal Automated Fabrication with Concrete:
    Case-Study and Structural Performance of Ribbed CFRP-Reinforced Concrete Ceiling
  17. Chen Meng, Li Jiahui, Zhang Tong, Zhang Mingzhong (2025-01)
    3D Printability of Recycled Steel-Fiber-Reinforced Ultra-High-Performance Concrete
  18. Sakhare Vishakha, Najar Mohamed, Deshpande Sachin (2024-12)
    Printing Performance of 3D Printed Geopolymer Through Pumpability, Extrudability, Buildability Properties:
    A Review
  19. Wang Hailong, Shen Junyi, Sun Xiaoyan, Dong Weiwei et al. (2024-12)
    Numerical Investigation on Shear Behavior of Reinforced Concrete Beam with 3D Printed Concrete Permanent Formwork
  20. Zeng Jun-Jie, Hu Xianwen, Sun Hou-Qi, Liu Yue et al. (2024-10)
    Triaxial Compressive Behavior of 3D Printed PE-Fiber-Reinforced Ultra-High-Performance Concrete
  21. Yang Yekai, Zhang Chiyu, Liu Zhongxian, Dong Liang et al. (2024-10)
    Effect of Hydration Process on the Inter-Layer Bond Tensile Mechanical Properties of Ultra-High-Performance Concrete for 3D Printing
  22. Wagner Juliana, Silveira Marcos, Vanderlei Romel, Das Sreekanta (2024-10)
    Comparative Analysis of Mold-Cast and 3D Printed Cement-Based Components:
    Implications for Standardization in Additive Construction
  23. Du Guoqiang, Qian Ye (2024-10)
    Bio-Inspired Innovations in 3D Concrete Printing:
    Structures, Materials and Applications
  24. Wu Yiwen, Liu Chao, Liu Huawei, Bai Guoliang et al. (2024-07)
    Mechanism of the Influence of Multi-Scale Pore-Structure on the Triaxial Mechanical Properties of 3D Printed Concrete with Recycled Sand
  25. Bai Gang, Guan Jingyuan, Wang Li, Li Zhijian et al. (2024-07)
    Bending Performance of 3D Printed Ultra-High-Performance Concrete Composite Beams
  26. Sun Chang, Li Jiawang, Liu Qiong, Chen Kailun et al. (2024-07)
    Compressive Performance and Damage Mechanism of Concrete Short Columns Confined by Steel-Wires-Reinforced 3DPM
  27. Dong Liang, Yang Yekai, Liu Zhongxian, Zhang Yan et al. (2024-06)
    Interface Bonding Characteristics of 3D Printed Ultra-High-Performance Concrete After Elevated Temperatures
  28. Yang Yekai, Lu Pengyuan, Liu Zhongxian, Dong Liang et al. (2024-04)
    Effect of Steel-Fiber with Different Orientations on Mechanical Properties of 3D Printed Steel-Fiber-Reinforced Concrete:
    Meso-Scale Finite-Element-Analysis
  29. Zaid Osama, Ouni Mohamed (2024-04)
    Advancements in 3D Printing of Cementitious Materials:
    A Review of Mineral Additives, Properties, and Systematic Developments
  30. Jia Zijian, Kong Lingyu, Jia Lutao, Ma Lei et al. (2024-04)
    Printability and Mechanical Properties of 3D Printing Ultra-High-Performance Concrete Incorporating Limestone-Powder
  31. Shahzad Qamar, Abbas Nadeem, Akbar Muhammad, Sabi Ehab et al. (2024-03)
    Influence of Print-Speed and Nozzle-Diameter on the Fiber-Alignment in 3D Printed Ultra-High-Performance Concrete
  32. Xiao Jianzhuang, Liu Haoran, Ding Tao, Yu Kequan et al. (2024-02)
    Rebar-Free Concrete Construction:
    Concept, Opportunities and Challenges
  33. Wang Xiaonan, Li Wengui, Guo Yipu, Kashani Alireza et al. (2024-02)
    Concrete 3D Printing Technology in Sustainable Construction:
    A Review on Raw Materials, Concrete Types and Performances
  34. Nguyen Vuong, Tran Jonathan, Liu Junli, Tran Mien et al. (2024-02)
    Extended Finite Element Multi-Scale Modelling for Crack Propagation in 3D Printed Fiber-Reinforced Concrete
  35. Alyami Mana, Khan Majid, Javed Muhammad, Ali Mujahid et al. (2023-12)
    Application of Metaheuristic Optimization Algorithms in Predicting the Compressive Strength of 3D Printed Fiber-Reinforced Concrete
  36. Alyami Mana, Khan Majid, Fawad Muhammad, Nawahz R. et al. (2023-11)
    Predictive Modeling for Compressive Strength of 3D Printed Fiber-Reinforced Concrete Using Machine Learning Algorithms
  37. Ahmadi Khatereh, Mousavi Seyed, Dehestani Mehdi (2023-09)
    Influence of Nano-Coated Micro-Steel-Fibers on Mechanical and Self-Healing Properties of 3D Printable Concrete Using Graphene-Oxide and Polyvinyl-Alcohol
  38. Wang Hao, Jiang Minghui, Hang Meiyan, Zhou Gangming et al. (2023-07)
    Research on the Mechanical Properties and Frost-Resistance of Aeolian Sand 3D Printed Mortar
  39. Pietras Daniel, Zbyszyński Wojciech, Sadowski Tomasz (2023-06)
    A 3D Printing Method of Cement-Based FGM Composites Containing Granulated Cork, Polypropylene Fibers, and a Polyethylene Net Inter-Layer
  40. Lyu Qifeng, Dai Pengfei, Chen Anguo (2023-05)
    Sandwich-Structured Porous Concrete Manufactured by Mortar-Extrusion and Aggregate-Bed 3D Printing
  41. Shahzad Qamar, Li Fangyuan (2023-05)
    The Influence of Print-Path on Early-Age Plastic Bearing-Capacity and Mechanical Behavior of 3D Printed Concrete:
    A Novel Approach for Practical Applications
  42. Wu Yiwen, Liu Chao, Bai Guoliang, Liu Huawei et al. (2023-03)
    3D Printed Concrete with Recycled Sand:
    Pore-Structure and Triaxial Compression Properties
  43. Yang Yekai, Wu Chengqing, Liu Zhongxian (2023-01)
    Rate-Dependent Behavior of 3D Printed Ultra-High-Performance Fiber-Reinforced Concrete Under Dynamic Splitting Tensile
  44. Robayo-Salazar Rafael, Gutiérrez Ruby, Villaquirán-Caicedo Mónica, Delvasto Arjona Silvio (2022-12)
    3D Printing with Cementitious Materials:
    Challenges and Opportunities for the Construction Sector
  45. Bai Gang, Wang Li, Wang Fang, Ma Guowei (2022-12)
    Assessing Printing Synergism in a Dual 3D Printing System for Ultra-High-Performance Concrete In-Process Reinforced Cementitious Composite
  46. Zhou Yiyi, Jiang Dan, Sharma Rahul, Xie Yi et al. (2022-11)
    Enhancement of 3D Printed Cementitious Composite by Short Fibers:
    A Review
  47. Ahadi Bahram, Valiente López María (2022-11)
    Use of Nitinol-Shape Memory Alloy in the Reinforcement of 3D Concrete Printing Industry
  48. Nguyen Vuong, Liu Junli, Li Shuai, Zhang Guomin et al. (2022-10)
    Modelling of 3D Printed Bio-Inspired Bouligand Cementitious Structures Reinforced with Steel-Fibers
  49. Khan Shoukat, Koç Muammer (2022-10)
    Numerical Modelling and Simulation for Extrusion-Based 3D Concrete Printing:
    The Underlying Physics, Potential, and Challenges
  50. Qaidi Shaker, Yahia Ammar, Tayeh B., Unis H. et al. (2022-10)
    3D Printed Geopolymer Composites:
    A Review
  51. Boddepalli Uday, Panda Biranchi, Gandhi Indu (2022-09)
    Rheology and Printability of Portland-Cement-Based Materials:
    A Review
  52. Peng Guanhong (2022-08)
    Digital Fabrication and Mechanical Properties of 3D Printing Concrete
  53. Dong Liang, Yang Yekai, Liu Zhongxian, Ren Quanchang et al. (2022-07)
    Microstructure and Mechanical Behavior of 3D Printed Ultra-High-Performance Concrete after Elevated Temperatures

BibTeX
@article{yang_wu_liu_zhan.2022.3PUHPFRCuTCL,
  author            = "Yekai Yang and Chengqing Wu and Zhongxian Liu and Hai Zhang",
  title             = "3D Printing Ultra-High-Performance Fiber-Reinforced Concrete under Triaxial Confining Loads",
  doi               = "10.1016/j.addma.2021.102568",
  year              = "2022",
  journal           = "Additive Manufacturing",
  volume            = "50",
}
Formatted Citation

Y. Yang, C. Wu, Z. Liu and H. Zhang, “3D Printing Ultra-High-Performance Fiber-Reinforced Concrete under Triaxial Confining Loads”, Additive Manufacturing, vol. 50, 2022, doi: 10.1016/j.addma.2021.102568.

Yang, Yekai, Chengqing Wu, Zhongxian Liu, and Hai Zhang. “3D Printing Ultra-High-Performance Fiber-Reinforced Concrete Under Triaxial Confining Loads”. Additive Manufacturing 50 (2022). https://doi.org/10.1016/j.addma.2021.102568.