Skip to content

Bond-Performance Between BFRP-Bars and 3D Printed Concrete (2020-10)

10.1016/j.conbuildmat.2020.121325

 Sun Xiaoyan, Gao Chao,  Wang Hailong
Journal Article - Construction and Building Materials, Vol. 269

Abstract

To improve the design and construction of three-dimensional (3D) printed concrete structures, the bond performance between basalt fibre reinforced polymer (BFRP) bars and 3D printed concrete were analysed via pull-out tests. It is found that the bond strength of 3D printed specimens was lower than that of mould-cast specimens, while the failure mode of BFRP bar-reinforced printed concrete was similar to that of reinforced common concrete. The bonding of sand-coated BFRP bars to 3D printed concrete was superior to that of smooth bars. The printing direction of concrete also affected bond performance, with the bond strengths of parallel and 45° inclined specimens exceeding that of vertically printed specimens. By identifying defects at printed and bonding interfaces, the bond degradation mechanism was determined. Furthermore, a continuous bond–slip model was established to predict the bonding strength between BFRP bars and printed concrete, which agreed well with the experimental results.

22 References

  1. Asprone Domenico, Auricchio Ferdinando, Menna Costantino, Mercuri Valentina (2018-03)
    3D Printing of Reinforced Concrete Elements:
    Technology and Design Approach
  2. Baz Bilal, Aouad Georges, Rémond Sébastien (2020-01)
    Effect of the Printing Method and Mortar’s Workability on Pull-Out Strength of 3D Printed Elements
  3. Ding Zhu, Wang Xiaodong, Sanjayan Jay, Zou Patrick et al. (2018-11)
    A Feasibility Study on HPMC-Improved Sulphoaluminate Cement for 3D Printing
  4. Feng Peng, Meng Xinmiao, Chen Jian-Fei, Ye Lieping (2015-06)
    Mechanical Properties of Structures 3D Printed with Cementitious Powders
  5. Hager Izabela, Golonka Anna, Putanowicz Roman (2016-08)
    3D Printing of Buildings and Building Components as the Future of Sustainable Construction?
  6. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  7. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  8. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  9. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  10. Ma Guowei, Li Zhijian, Wang Li, Bai Gang (2018-10)
    Micro-Cable-Reinforced Geopolymer Composite for Extrusion-Based 3D Printing
  11. Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
    Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing
  12. Ma Guowei, Wang Li (2017-08)
    A Critical Review of Preparation Design and Workability Measurement of Concrete Material for Large-Scale 3D Printing
  13. Marchment Taylor, Sanjayan Jay (2019-10)
    Mesh Reinforcing Method for 3D Concrete Printing
  14. Mechtcherine Viktor, Grafe Jasmin, Nerella Venkatesh, Spaniol Erik et al. (2018-05)
    3D Printed Steel-Reinforcement for Digital Concrete Construction:
    Manufacture, Mechanical Properties and Bond Behavior
  15. Mechtcherine Viktor, Nerella Venkatesh, Ogura Hiroki, Grafe Jasmin et al. (2018-09)
    Alternative Reinforcements for Digital Concrete Construction
  16. Nematollahi Behzad, Vijay Praful, Sanjayan Jay, Nazari Ali et al. (2018-11)
    Effect of Polypropylene Fiber Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction
  17. Nerella Venkatesh, Mechtcherine Viktor (2019-02)
    Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology (CONPrint3D)
  18. Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
    Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction
  19. Yuan Qiang, Li Zemin, Zhou Dajun, Huang Tingjie et al. (2019-08)
    A Feasible Method for Measuring the Buildability of Fresh 3D Printing Mortar
  20. Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
    Fresh Properties of a Novel 3D Printing Concrete Ink
  21. Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
    Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete
  22. Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
    Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction

41 Citations

  1. Liu Chao, Chen Xianqin, Luo Zhiyu, Liu Huawei et al. (2026-01)
    Effects of Pore Defects on Interfacial Bonding Between Rebar and 3D Printed Coarse Aggregate Concrete Under Multiple Loading Conditions
  2. Wang Xiangyu, Wang Sizhe, Deng North, Liu Zhenbang et al. (2026-01)
    Robotic Rebar Insertion and Grouting for Reinforcement of 3D Printed Concrete:
    Technique Development and Bond Behavior Characterization
  3. Wang Li, Fan Haichen, Wang Qiang, Bai Gang et al. (2025-09)
    Design Method and Force Transmission Mechanism of 3D Printed Concrete Truss Beams Reinforced with 3D Conical Reinforcement
  4. Ding Tao, Dong Haining, Sikora Paweł, Lin Guan (2025-07)
    3D Printed Concrete Reinforced with Flexible Fiber Reinforced Polymer Strips or Grids:
    Concept and Bond Tests
  5. Girskas Giedrius, Kligys Modestas (2025-06)
    3D Concrete Printing Review:
    Equipment, Materials, Mix Design, and Properties
  6. Yao Jiaxu, Luo Jie, Qiu Minghong, Nagai Kohei (2025-06)
    Mesoscale Modeling of Anisotropic Compressive Behavior and Pull-Out Performance of 3D Printed Concrete with Steel Bars Using 3D RBSM
  7. Mohamed Osama, Mishra Anamika, Isam Fida (2025-05)
    An Overview of 3D Printed Concrete for Building Structures:
    Material Properties, Sustainability, Future Opportunities, and Challenges
  8. Ding Tao, Peng Zechen, Dong Haining (2025-05)
    Mechanical Properties of CFRP Grid Reinforced 3D Printed Concrete Arch Structures
  9. Liu Qiong, Singh Amardeep, Wang Qiming, Qifeng Lyu (2025-05)
    3D-Printed Application in Concretes
  10. Cao Xiangpeng, Cui Hongzhi (2025-04)
    Simple Floor Nail Placement Technique to Reinforce 3D-Printed Concrete:
    An Experimental Investigation
  11. Liu Qiong, Wang Qiming, Sun Chang, Singh Amardeep et al. (2025-04)
    Compressive Performance and Damage Evolution of Concrete Short Columns with Shell-Filling Structure Confined by Continuous Fiber Reinforced 3D Printed Mortar
  12. Wang Qiang, Yang Wenwei, Wang Li, Bai Gang et al. (2025-03)
    Reinforcement Design and Structural Performance for the Topology Optimized 3D Printed Concrete Truss Beams
  13. Shahzad Qamar, Li Fangyuan (2025-03)
    Influence of Concrete Interfaces on the Damage and Pull-Out Behavior of 3D-Printed Concrete Structures
  14. Zeng Jun-Jie, Sun Hou-Qi, Deng Run-Bin, Yan Zitong et al. (2025-02)
    Bond Performance Between FRP-Bars and 3D-Printed High-Performance Concrete
  15. Chen Meng, Yu Kanghao, Zhang Tong, Wang Yuting (2025-01)
    Characterizing and Modelling the Bond-Slip-Behavior of Steel-Bars in 3D Printed Engineered Cementitious Composites
  16. Cao Xiangpeng, Wu Shuoli, Cui Hongzhi (2024-12)
    Experimental Study on In-Situ Mesh Fabrication for Reinforcing 3D Printed Concrete
  17. Tarhan Yeşim, Tarhan İsmail, Jacquet Yohan, Perrot Arnaud (2024-09)
    Mechanical Behavior of 3D Printed and Textile-Reinforced Eco-Friendly Composites
  18. Baktheer Abedulgader, Claßen Martin (2024-07)
    A Review of Recent Trends and Challenges in Numerical Modeling of the Anisotropic Behavior of Hardened 3D Printed Concrete
  19. Duan Jiaqi, Sun Shouzheng, Chi Shengfeng, Hu Chunyou et al. (2024-06)
    Effect of Process Parameters on Forming Quality and Flexural Strength of Continuous-Fiber-Reinforced Cement-Based 3D Printed Composites
  20. Zeng Jun-Jie, Yan Zitong, Jiang Yuan, Li Pei-Lin (2024-02)
    3D Printing of FRP Grid and Bar Reinforcement for Reinforced Concrete Plates:
    Development and Effectiveness
  21. Yan Zitong, Zeng Jun-Jie, Zhuge Yan, Liao Jinjing et al. (2023-12)
    Compressive Behavior of FRP-Confined 3D Printed Ultra-High-Performance Concrete Cylinders
  22. Warsi Syed, Panda Biranchi, Biswas Pankaj (2023-12)
    Exploring Fiber Addition Methods and Mechanical Properties of Fiber-Reinforced 3D Printed Concrete:
    A Review
  23. Liu Huawei, Liu Chao, Zhang Yamei, Bai Guoliang (2023-11)
    Bonding Properties Between 3D Printed Coarse Aggregate Concrete and Rebar Based on Interface Structural Characteristics
  24. Zeng Jun-Jie, Li Pei-Lin, Yan Zitong, Zhou Jie-Kai et al. (2023-08)
    Behavior of 3D Printed HPC Plates with FRP-Grid-Reinforcement Under Bending
  25. Cao Xiangpeng, Yu Shiheng, Cui Hongzhi (2023-08)
    Experimental Study of the In-Situ Rebar-Splicing-Technique to Reinforce 3D Printed Concrete in Vertical Directions
  26. Ungureanu Dragoș, Onuțu Cătălin, Isopescu Dorina, Țăranu Nicolae et al. (2023-06)
    A Novel Approach for 3D Printing Fiber-Reinforced Mortars
  27. Rekhi Jagruti, Stern Alaina (2023-04)
    3D Concrete Printed Construction:
    Building the Future of Housing, Layer-by-Layer
  28. Ramezani Amir, Modaresi Shahriar, Dashti Pooria, Givkashi Mohammad et al. (2023-04)
    Effects of Different Types of Fibers on Fresh and Hardened Properties of Cement and Geopolymer-Based 3D Printed Mixtures:
    A Review
  29. Ding Tao, Wang Ziyue, Liu Haoran, Xiao Jianzhuang (2023-03)
    Simulation on Pull-Out Performance of Steel-Bar from 3D Printed Concrete
  30. Vijayalaxmi Jeyasingh, Singh Parth (2023-01)
    Comparative Analysis of Concrete 3D Printing and Conventional Construction Technique for Housing
  31. Cao Xiangpeng, Yu Shiheng, Wu Shuoli, Cui Hongzhi (2022-11)
    Experimental Study of Hybrid Manufacture of Printing and Cast-in-Process to Reinforce 3D Printed Concrete
  32. Lv Chun, Shen Hongtao, Liu Jie, Wu Dan et al. (2022-11)
    Properties of 3D Printing Fiber-Reinforced Geopolymers Based on Inter-Layer Bonding and Anisotropy
  33. Gebhard Lukas, Esposito Laura, Menna Costantino, Mata-Falcón Jaime (2022-07)
    Inter-Laboratory Study on the Influence of 3D Concrete Printing Set-Ups on the Bond Behavior of Various Reinforcements
  34. Cao Xiangpeng, Yu Shiheng, Zheng Dapeng, Cui Hongzhi (2022-06)
    Nail-Planting to Enhance the Interface Bonding Strength in 3D Printed Concrete
  35. Aramburu Amaia, Calderon-Uriszar-Aldaca Iñigo, Puente Iñigo (2022-05)
    Bonding Strength of Steel-Rebars Perpendicular to the Hardened 3D Printed Concrete-Layers
  36. Liu Huawei, Liu Chao, Bai Guoliang, Wu Yiwen et al. (2022-04)
    Influence of Pore-Defects on the Hardened Properties of 3D Printed Concrete with Coarse Aggregate
  37. Cao Xiangpeng, Yu Shiheng, Cui Hongzhi, Li Zongjin (2022-04)
    3D Printing Devices and Reinforcing Techniques for Extruded Cement-Based Materials:
    A Review
  38. Cao Xiangpeng, Yu Shiheng, Cui Hongzhi (2022-02)
    Experimental Investigation on Inner- and Inter-Strip Reinforcements for 3D Printed Concrete via Automatic Staple Inserting Technique
  39. Singh Amardeep, Liu Qiong, Xiao Jianzhuang, Lyu Qifeng (2022-02)
    Mechanical and Macrostructural Properties of 3D Printed Concrete Dosed with Steel-Fibers under Different Loading-Direction
  40. Ding Tao, Qin Fei, Xiao Jianzhuang, Chen Xiaoming et al. (2022-01)
    Experimental Study on the Bond Behavior Between Steel-Bars and 3D Printed Concrete
  41. Wang Li, Liu Yi, Yang Yu, Li Yanfeng et al. (2021-04)
    Bonding Performance of 3D Printing Concrete with Self-Locking Interfaces Exposed to Compression-Shear and Compression-Splitting Stresses

BibTeX
@article{sun_gao_wang.2021.BPBBBa3PC,
  author            = "Xiaoyan Sun and Chao Gao and Hailong Wang",
  title             = "Bond-Performance Between BFRP-Bars and 3D Printed Concrete",
  doi               = "10.1016/j.conbuildmat.2020.121325",
  year              = "2021",
  journal           = "Construction and Building Materials",
  volume            = "269",
}
Formatted Citation

X. Sun, C. Gao and H. Wang, “Bond-Performance Between BFRP-Bars and 3D Printed Concrete”, Construction and Building Materials, vol. 269, 2021, doi: 10.1016/j.conbuildmat.2020.121325.

Sun, Xiaoyan, Chao Gao, and Hailong Wang. “Bond-Performance Between BFRP-Bars and 3D Printed Concrete”. Construction and Building Materials 269 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121325.