Skip to content

Inter-Layer Cohesion in 3D Printed Concrete (2024-10)

The Role of Width-to-Height-Ratio in Modulating Transport Properties and Pore-Structure

10.1016/j.jobe.2024.111009

Lin Yini,  Yan Jiachuan,  Sun Ming, Han Xiaoyu, Tang Boyang
Journal Article - Journal of Building Engineering, Vol. 98, No. 111009

Abstract

Due to the extrusion-based printing and layer-to-layer deposition characteristics, the interlayer cohesion of 3D printed concrete is highly sensitive to the geometry of the printed layers, significantly influencing both mechanical performance and long-term durability. In this study, the width-to-height (W/H) ratio was employed as a geometric parameter to explore its relationship with interlayer transport and pore morphology. The research began by optimizing mix proportions through fluidity and printability tests. Subsequently, chloride ion permeation, mercury intrusion porosimetry, and micro-CT were used to analyze interfacial transport and pore distribution, revealing the influence of the W/H ratio on these properties. The results demonstrate that the W/H ratio plays a crucial role in densification and interfacial defect formation in 3D printed concrete. While the extrusion process enhances matrix compaction, a higher W/H ratio generally promotes stronger interlayer cohesion and reduces chloride ion permeability. However, an excessively large W/H ratio, especially when coupled with air entrainment, can introduce defects and increase porosity at the layer interfaces. The study concludes that maintaining a W/H ratio between 1.5 and 2.0 effectively strengthens interlayer cohesion. These results offer valuable theoretical insights and technical support for the design and application of 3D printed concrete materials.

41 References

  1. Baz Bilal, Aouad Georges, Leblond Philippe, Mansouri Omar et al. (2020-05)
    Mechanical Assessment of Concrete:
    Steel Bonding in 3D Printed Elements
  2. Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
    Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture
  3. Chen Mingxu, Yang Lei, Zheng Yan, Huang Yongbo et al. (2020-04)
    Yield-Stress and Thixotropy-Control of 3D Printed Calcium-Sulfoaluminate Cement Composites with Metakaolin Related to Structural Build-Up
  4. Comminal Raphaël, Silva Wilson, Andersen Thomas, Stang Henrik et al. (2020-07)
    Influence of Processing Parameters on the Layer Geometry in 3D Concrete Printing:
    Experiments and Modelling
  5. Ding Tao, Xiao Jianzhuang, Mechtcherine Viktor (2023-05)
    Microstructure and Mechanical Properties of Inter-Layer Regions in Extrusion-Based 3D Printed Concrete:
    A Critical Review
  6. Gebhard Lukas, Mata-Falcón Jaime, Anton Ana-Maria, Dillenburger Benjamin et al. (2021-04)
    Structural Behavior of 3D Printed Concrete Beams with Various Reinforcement-Strategies
  7. Han Xiaoyu, Yan Jiachuan, Chen Tiefeng, Tang Boyang et al. (2023-07)
    Plastic Shrinkage of 3D Printed Concrete Under Different Self-Weight of Upper Layers
  8. Han Xiaoyu, Yan Jiachuan, Liu Mingjian, Huo Liang et al. (2021-10)
    Experimental Study on Large-Scale 3D Printed Concrete Walls Under Axial Compression
  9. Huang Xin, Yang Weihao, Song Fangnian, Zou Jiuqun (2022-04)
    Study on the Mechanical Properties of 3D Printing Concrete Layers and the Mechanism of Influence of Printing Parameters
  10. Kaliyavaradhan Senthil, Ambily Parukutty, Prem Prabhat, Ghodke Swapnil (2022-08)
    Test-Methods for 3D Printable Concrete
  11. Kloft Harald, Krauss Hans-Werner, Hack Norman, Herrmann Eric et al. (2020-05)
    Influence of Process Parameters on the Inter-Layer Bond Strength of Concrete Elements Additive Manufactured by Shotcrete 3D Printing
  12. Kruger Jacques, Plessis Anton, Zijl Gideon (2020-12)
    An Investigation into the Porosity of Extrusion-Based 3D Printed Concrete
  13. Liu Huawei, Liu Chao, Bai Guoliang, Wu Yiwen et al. (2022-04)
    Influence of Pore-Defects on the Hardened Properties of 3D Printed Concrete with Coarse Aggregate
  14. Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-09)
    3D Printing Concrete with Recycled Coarse Aggregates:
    The Influence of Pore-Structure on Inter-Layer Adhesion
  15. Liu Chao, Wang Xianggang, Chen Yuning, Zhang Chao et al. (2021-06)
    Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete
  16. Liu Chao, Zhang Rongfei, Liu Huawei, He Chunhui et al. (2021-11)
    Analysis of the Mechanical Performance and Damage Mechanism for 3D Printed Concrete Based on Pore-Structure
  17. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  18. Ma Lei, Zhang Qing, Lombois-Burger Hélène, Jia Zijian et al. (2022-09)
    Pore-Structure, Internal Relative Humidity, and Fiber-Orientation of 3D Printed Concrete with Polypropylene-Fiber and Their Relation with Shrinkage
  19. Marchment Taylor, Sanjayan Jay (2021-04)
    Reinforcement Method for 3D Concrete Printing Using Paste-Coated Bar Penetrations
  20. Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2020-08)
    Plastic Shrinkage Cracking in 3D Printed Concrete
  21. Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2021-09)
    Modelling the Inter-Layer Bond Strength of 3D Printed Concrete with Surface Moisture
  22. Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2022-04)
    A Plastic Shrinkage Cracking-Risk-Model for 3D Printed Concrete Exposed to Different Environments
  23. Muthukrishnan Shravan, Kua Harn, Yu Ling, Chung Jacky (2020-05)
    Fresh Properties of Cementitious Materials Containing Rice-Husk-Ash for Construction 3D Printing
  24. Nair Sooraj, Tripathi Avinaya, Neithalath Narayanan (2021-09)
    Examining Layer-Height Effects on the Flexural and Fracture Response of Plain and Fiber-Reinforced 3D Printed Beams
  25. Nerella Venkatesh, Näther Mathias, Iqbal Arsalan, Butler Marko et al. (2018-09)
    In-Line Quantification of Extrudability of Cementitious Materials for Digital Construction
  26. Nodehi Mehrab, Aguayo Federico, Nodehi Shahab, Gholampour Aliakbar et al. (2022-07)
    Durability Properties of 3D Printed Concrete
  27. Putten Jolien, Volder Melissa, Heede Philip, Deprez Maxim et al. (2022-03)
    Transport Properties of 3D Printed Cementitious Materials with Prolonged Time-Gap Between Successive Layers
  28. Rahul Attupurathu, Mohan Manu, Schutter Geert, Tittelboom Kim (2021-10)
    3D Printable Concrete with Natural and Recycled Coarse Aggregates:
    Rheological, Mechanical and Shrinkage Behavior
  29. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
    3D Printable Concrete:
    Mixture-Design and Test-Methods
  30. Sun Xiaoyan, Zhou Jiawei, Wang Qun, Shi Jiangpeng et al. (2021-11)
    PVA-Fiber-Reinforced High-Strength Cementitious Composite for 3D Printing:
    Mechanical Properties and Durability
  31. Tay Yi, Qian Ye, Tan Ming (2019-05)
    Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test
  32. Wang Zhibin, Jia Lutao, Deng Zhicong, Zhang Chao et al. (2022-08)
    Bond Behavior Between Steel-Bars and 3D Printed Concrete:
    Effect of Concrete Rheological Property, Steel-Bar Diameter and Paste-Coating
  33. Wang Li, Tian Zehao, Ma Guowei, Zhang Mo (2020-02)
    Inter-Layer Bonding Improvement of 3D Printed Concrete with Polymer-Modified Mortar:
    Experiments and Molecular Dynamics Studies
  34. Wang Li, Yang Yu, Yao Liang, Ma Guowei (2022-02)
    Interfacial Bonding Properties of 3D Printed Permanent Formwork with the Post-Casted Concrete
  35. Weng Yiwei, Li Mingyang, Zhang Dong, Tan Ming et al. (2021-02)
    Investigation of Inter-Layer Adhesion of 3D Printable Cementitious Material from the Aspect of Printing-Process
  36. Wi Kwangwoo, Wang Kejin, Taylor Peter, Laflamme Simon et al. (2021-09)
    Properties and Microstructure of Extrusion-Based 3D Printing Mortar Containing a Highly Flowable, Rapid Set Grout
  37. Wu Yiwen, Liu Chao, Bai Guoliang, Liu Huawei et al. (2023-03)
    3D Printed Concrete with Recycled Sand:
    Pore-Structure and Triaxial Compression Properties
  38. Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
    Large-Scale 3D Printing Concrete Technology:
    Current Status and Future Opportunities
  39. Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
    Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete
  40. Zhang Yu, Zhang Yunsheng, Yang Lin, Liu Guojian et al. (2022-12)
    Influence of the Pore Feature on the Water-Uptake in 3D Printed Concrete
  41. Zhou Wen, Zhang Yamei, Ma Lei, Li Victor (2022-04)
    Influence of Printing Parameters on 3D Printing Engineered Cementitious Composites

6 Citations

  1. Luo Xiaoyu, Zhao Yuqi, Yang Min, Yao Xiaofei et al. (2025-12)
    Introducing Cement Composite Agents During Printing Process to Enhance the 3D-Printed Concrete Interfaces Between Layers and Filaments
  2. Li Fuhai, Xiao Sai, Yang Bo, Li Kepu et al. (2025-09)
    Mechanical Properties and Anisotropy of 3D-Printed Concrete Modified with Multiscale Materials Based on Optimized Printing Process Design
  3. Lin Yini, Yan Jiachuan, Sun Ming, Tang Boyang et al. (2025-08)
    Effects of Waste Glass Powder on Printability, Hydration and Microstructure of 3D Printing Concrete
  4. Lin Xing-Tao, Xu Shuhao, Chen Xiangsheng (2025-08)
    Optimization of Building Structures Based on Additive Manufacturing:
    A Review
  5. Abedi Mohammadmadhi, Waris Muhammad, Alawi Mubarak, Jabri Khalifa (2025-08)
    Transformative Low-Carbon 3D-Printed Infrastructure:
    Machine Learning-Driven Self-Sensing and Self-Heating Limestone Calcined Clay Cement (LC3) Composites
  6. Abedi Mohammadmadhi, Waris Muhammad, Alawi Mubarak, Jabri Khalifa et al. (2024-12)
    From Local Earth to Modern Structures:
    A Critical Review of 3D Printed Cement Composites for Sustainable and Efficient Construction

BibTeX
@article{lin_yan_sun_han.2024.ILCi3PC,
  author            = "Yini Lin and Jiachuan Yan and Ming Sun and Xiaoyu Han and Boyang Tang",
  title             = "Inter-Layer Cohesion in 3D Printed Concrete: The Role of Width-to-Height-Ratio in Modulating Transport Properties and Pore-Structure",
  doi               = "10.1016/j.jobe.2024.111009",
  year              = "2024",
  journal           = "Journal of Building Engineering",
  volume            = "98",
  pages             = "111009",
}
Formatted Citation

Y. Lin, J. Yan, M. Sun, X. Han and B. Tang, “Inter-Layer Cohesion in 3D Printed Concrete: The Role of Width-to-Height-Ratio in Modulating Transport Properties and Pore-Structure”, Journal of Building Engineering, vol. 98, p. 111009, 2024, doi: 10.1016/j.jobe.2024.111009.

Lin, Yini, Jiachuan Yan, Ming Sun, Xiaoyu Han, and Boyang Tang. “Inter-Layer Cohesion in 3D Printed Concrete: The Role of Width-to-Height-Ratio in Modulating Transport Properties and Pore-Structure”. Journal of Building Engineering 98 (2024): 111009. https://doi.org/10.1016/j.jobe.2024.111009.