Skip to content

Effect of Steel-Fiber Shape and Content on Printability, Microstructure and Mechanical Properties of 3D Printable High-Strength Cementitious Materials (2024-03)

10.1016/j.cscm.2024.e03080

 Jia Zijian, Zhou Mengting,  Chen Yu, Wang Wei, Ma Lei,  Chen Yuning,  Liu Chao,  Zhang Yamei
Journal Article - Case Studies in Construction Materials, Vol. 20, No. e03080

Abstract

This study investigates the effects of steel fiber shape (straight and hooked-end) and content (0, 0.5, 1.0, and 1.5 vol%) on rheological properties, printability, mechanical performance and microstructure of 3D printable steel fiber reinforced high strength concrete (3DP-SFHSC). The results indicate that the increase of fiber content improves the mechanical behaviors of 3DP-SFHSC, but the extrudability suffers from reduction when the fiber content exceeded 1.0 vol% due to the significant increase in yield stress. The addition of 1.5 vol% hooked-end fibers enhances the compressive strength of 3DP-SFHSC by 8%, 25.7%, and 40.4% in the X, Y, and Z directions, respectively. Additionally, it also improves the tensile strength in the X direction by 37.67%. The printed specimens exhibit weaker mechanical properties compared to the cast specimens. On the one hand, the lower fiber-matrix compactness resulting from the absence of vibration during printing leads to increased porosity and weak bonding between the steel fibers and matrix. On the other hand, the inconsistent movement between fibers and mortar matrix during extrusion process may also cause the formation of gaps around fibers. Straight fibers show pronounced enhancements in buildability, compressive strength and tensile strength compared to hooked-end fibers at the same fiber volume fraction. Straight fibers align easily during the extrusion process, contributing to a matrix with lower porosity and smaller average pore size.

19 References

  1. Arunothayan Arun, Nematollahi Behzad, Khayat Kamal, Ramesh Akilesh et al. (2022-11)
    Rheological Characterization of Ultra-High-Performance Concrete for 3D Printing
  2. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
    Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing
  3. Bhardwaj Abhinav, Jones Scott, Kalantar Negar, Pei Zhijian et al. (2019-06)
    Additive Manufacturing Processes for Infrastructure Construction:
    A Review
  4. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  5. Chen Yuning, Jia Lutao, Liu Chao, Zhang Zedi et al. (2022-01)
    Mechanical Anisotropy Evolution of 3D Printed Alkali-Activated Materials with Different GGBFS-FA Combinations
  6. Chen Mingxu, Li Laibo, Wang Jiaao, Huang Yongbo et al. (2019-10)
    Rheological Parameters and Building Time of 3D Printing Sulphoaluminate-Cement-Paste Modified by Retarder and Diatomite
  7. Chen Yuning, Zhang Yamei, Xie Yudong, Zhang Zedi et al. (2022-09)
    Unraveling Pore-Structure Alternations in 3D Printed Geopolymer Concrete and Corresponding Impacts on Macro-Properties
  8. Kruger Jacques, Plessis Anton, Zijl Gideon (2020-12)
    An Investigation into the Porosity of Extrusion-Based 3D Printed Concrete
  9. Liu Chao, Wang Xianggang, Chen Yuning, Zhang Chao et al. (2021-06)
    Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete
  10. Moini Mohamadreza, Baghaie Ahmadreza, Rodriguez Fabian, Zavattieri Pablo et al. (2021-06)
    Quantitative Microstructural Investigation of 3D Printed and Cast Cement-Pastes Using Micro-Computed Tomography- and Image-Analysis
  11. Paolini Alexander, Kollmannsberger Stefan, Rank Ernst (2019-10)
    Additive Manufacturing in Construction:
    A Review on Processes, Applications, and Digital Planning Methods
  12. Pham Luong, Tran Jonathan, Sanjayan Jay (2020-04)
    Steel-Fiber-Reinforced 3D Printed Concrete:
    Influence of Fiber Sizes on Mechanical Performance
  13. Sun Xiaoyan, Zhou Jiawei, Wang Qun, Shi Jiangpeng et al. (2021-11)
    PVA-Fiber-Reinforced High-Strength Cementitious Composite for 3D Printing:
    Mechanical Properties and Durability
  14. Tran Mien, Cu Yen, Le Chau (2021-10)
    Rheology and Shrinkage of Concrete Using Polypropylene-Fiber for 3D Concrete Printing
  15. Yang Yekai, Wu Chengqing, Liu Zhongxian, Wang Hailiang et al. (2021-10)
    Mechanical Anisotropy of Ultra-High-Performance Fiber-Reinforced Concrete for 3D Printing
  16. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
    Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete
  17. Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
    Fresh Properties of a Novel 3D Printing Concrete Ink
  18. Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
    Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete
  19. Zhou Wen, Zhang Yamei, Ma Lei, Li Victor (2022-04)
    Influence of Printing Parameters on 3D Printing Engineered Cementitious Composites

19 Citations

  1. Tong Zhongling, Guan Qingtao, Elabbasy Ahmed, Ateah Ali et al. (2025-12)
    Empowering 3D Printed Concrete:
    Discovering the Impact of Steel Fiber Reinforcement on Mechanical Performance
  2. Xue Jia-Chen, Wang Wei-Chien, Lee Ming-Gin, Huang Chia-Yun et al. (2025-11)
    Examining the Multi-Scale Toughening Mechanisms and Mechanical Anisotropic Behavior of 3D Printed Concrete Reinforced with Calcium Sulfate Whiskers and Mixed Fibers
  3. Akgümüş Fatih, Şahin Hatice, Mardani Ali (2025-10)
    Investigation of Waste Steel Fiber Usage Rate and Length Change on Some Fresh State Properties of 3D Printable Concrete Mixtures
  4. Varghese Renny, Rangel Bárbara, Maia Lino (2025-10)
    Strength, Structure, and Sustainability in 3D-Printed Concrete Using Different Types of Fiber Reinforcements
  5. Ali Muhammad, Qian Hui, Umar Muhammad, Fenglin Liu et al. (2025-10)
    Rheological, Mechanical, and Self-Recovery Performance of 3D-Printed ECC Reinforced with Shape Memory Alloy Fibers
  6. Philip Nivin, Jędrzejewska Agnieszka, Mathew Ashitta, Uthuppan Susan (2025-09)
    Steel Fiber Reinforcement for Improved Structural Performance and Durability of 3D Printed Mortar in Marine Environments
  7. Chortis Alexandros, Gkountas Charalampos, Melidis Lazaros, Katakalos Konstantinos (2025-09)
    Seismic Performance Evaluation of 3D-Printed Concrete Walls Through Numerical Methods
  8. Dong Enlai, Jia Zijian, Rao Suduan, Jia Lutao et al. (2025-08)
    Fiber Alignment Mechanism in 3D-Printed Ultra-High Performance Concrete Based on Fluid Dynamics Theory
  9. Medeiros Fernanda, Anjos Marcos, Maia José, Dias Leonardo et al. (2025-08)
    Effect of Sisal Fibers on the Behavior of 3D-Printed Cementitious Mixtures Exposed to High Temperatures
  10. Xiahou Xiaer, Ding Xingyuan, Yu Ke-Ke, Lu Cong (2025-08)
    From Waste to Strength:
    Sustainable Valorization of Modified Recycled PET Fibers for Rheological Control and Performance Enhancement in 3D Printed Concrete
  11. Zhang Chao, Ren Juanjuan, Zhang Shihao, Guo Yipu et al. (2025-07)
    Advanced Impact Resistance Design Through 3D-Printed Concrete Technology:
    Unleashing the Potential of Additive Manufacturing for Protective Structures
  12. Ravichandran Darssni, Prem Prabhat, Giridhar Greeshma, Bhaskara Gollapalli et al. (2025-04)
    Time-Dependent Properties of 3D-Printed UHPC with Silica Sand, Copper Slag, and Fibers
  13. Liu Chao, Liang Zhan, Liu Huawei, Wu Yiwen et al. (2025-03)
    Seismic Performance of 3D Printed Reinforced Concrete Walls:
    Experimental Study and Numerical Simulation
  14. Yuan Hanquan, Dong Enlai, Jia Zijian, Jia Lutao et al. (2025-03)
    The Influence of Pore Structure and Fiber Orientation on Anisotropic Mechanical Property of 3D Printed Ultra-High-Performance Concrete
  15. Xia Zhenjiang, Geng Jian, Zhou Zhijie, Liu Genjin (2025-01)
    Comparative Analysis of Polypropylene, Basalt, and Steel Fibers in 3D Printed Concrete:
    Effects on Flowability, Printabiliy, Rheology, and Mechanical Performance
  16. Dong Enlai, Yuan Hanquan, Chen Yu, Jia Lutao et al. (2025-01)
    Printing Large-Size Eggshell-Shaped Elements with Ultra-High-Performance Concrete:
    From Material-Design to Structural Bearing-Capacity-Assessment
  17. Huang Junxiang, Peng Zeqin, Tan Xianzhong, Gong Guofang et al. (2024-12)
    Mechanism Analysis of the Magnetic Field-Assisted 3D Printed Steel-Fiber-Reinforced Concrete
  18. Li Shuai, Khieu Hai, Black Jay, Nguyen Hung-Xuan et al. (2024-12)
    Two-Scale 3D Printed Steel-Fiber-Reinforcements-Strategy for Concrete Structures
  19. Althoey Fadi, Zaid Osama, Ahmed Bilal, Elhadi Khaled (2024-10)
    Impact of Double Hooked Steel-Fibers and Nano-Kaolin-Clay on Fresh Properties of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete

BibTeX
@article{jia_zhou_chen_wang.2024.EoSFSaCoPMaMPo3PHSCM,
  author            = "Zijian Jia and Mengting Zhou and Yu Chen and Wei Wang and Lei Ma and Yuning Chen and Chao Liu and Yamei Zhang",
  title             = "Effect of Steel-Fiber Shape and Content on Printability, Microstructure and Mechanical Properties of 3D Printable High-Strength Cementitious Materials",
  doi               = "10.1016/j.cscm.2024.e03080",
  year              = "2024",
  journal           = "Case Studies in Construction Materials",
  volume            = "20",
  pages             = "e03080",
}
Formatted Citation

Z. Jia, “Effect of Steel-Fiber Shape and Content on Printability, Microstructure and Mechanical Properties of 3D Printable High-Strength Cementitious Materials”, Case Studies in Construction Materials, vol. 20, p. e03080, 2024, doi: 10.1016/j.cscm.2024.e03080.

Jia, Zijian, Mengting Zhou, Yu Chen, Wei Wang, Lei Ma, Yuning Chen, Chao Liu, and Yamei Zhang. “Effect of Steel-Fiber Shape and Content on Printability, Microstructure and Mechanical Properties of 3D Printable High-Strength Cementitious Materials”. Case Studies in Construction Materials 20 (2024): e03080. https://doi.org/10.1016/j.cscm.2024.e03080.