Skip to content

Comparative Environmental-Assessment of 3D Concrete Printing with Engineered Cementitious Composites (2024-07)

10.1080/17452759.2024.2369249

 Ye Junhong,  Zhuang Zicheng,  Teng Fei,  Yu Jie, Zhang Dong,  Weng Yiwei
Journal Article - Virtual and Physical Prototyping, Vol. 19, Iss. 1

Abstract

Engineered cementitious composites (ECC) with superior tensile properties have potential to print self-reinforced structures. However, the environmental performance of 3D concrete printing with ECC (3DP-ECC) lacks further investigation. This study evaluates the environmental impacts of structures printed with 3DP-ECC via life cycle assessment. Results show that 3DP-ECC incorporating incineration bottom ash (IBA), crumb rubber (CR), and limestone powder (LP) reduce carbon emission by 25%, 24%, and 47%, respectively, compared to that of reinforced concrete (RC) with a steel ratio of 1.01%. A frame structure printed by LP-ECC reduces carbon emission by 42% compared to that of the unit fabricated by mold-cast RC (MC-RC). A circle house printed by LP-ECC reduces carbon emission by 28% compared to that of the counterpart fabricated by MC-RC. Sensitivity analysis identifies the transportation distance range to achieve a sustainable 3DCP. The findings provide a guideline to select appropriate 3DP-ECC and construction methods for sustainable construction.

27 References

  1. Agustí-Juan Isolda, Müller Florian, Hack Norman, Wangler Timothy et al. (2017-04)
    Potential Benefits of Digital Fabrication for Complex Structures:
    Environmental Assessment of a Robotically Fabricated Concrete Wall
  2. Alhumayani Hashem, Gomaa Mohamed, Soebarto Veronica, Jabi Wassim (2020-06)
    Environmental Assessment of Large-Scale 3D Printing in Construction:
    A Comparative Study between Cob and Concrete
  3. Bao Yi, Xu Mingfeng, Soltan Daniel, Xia Tian et al. (2018-09)
    Three-Dimensional Printing Multifunctional Engineered Cementitious Composites (ECC) for Structural Elements
  4. Ding Tao, Xiao Jianzhuang, Zou Shuai, Yu Jiangtao (2021-03)
    Flexural Properties of 3D Printed Fiber-Reinforced Concrete with Recycled Sand
  5. Haar Bjorn, Kruger Jacques, Zijl Gideon (2023-05)
    Off-Site Construction with 3D Concrete Printing
  6. Han Yilong, Yang Zhihan, Ding Tao, Xiao Jianzhuang (2020-08)
    Environmental and Economic Assessment on 3D Printed Buildings with Recycled Concrete
  7. Khajavi Siavash, Tetik Müge, Mohite Ashish, Peltokorpi Antti et al. (2021-04)
    Additive Manufacturing in the Construction Industry:
    The Comparative Competitiveness of 3D Concrete Printing
  8. Li Victor, Bos Freek, Yu Kequan, McGee Wesley et al. (2020-04)
    On the Emergence of 3D Printable Engineered, Strain-Hardening Cementitious Composites
  9. Liu Xiongfei, Li Qi, Wang Fang, Ma Guowei (2022-07)
    Systematic Approach for Printability Evaluation and Mechanical Property Optimization of Spray-Based 3D Printed Mortar
  10. Liu Siyu, Lu Bing, Li Hongliang, Pan Zehua et al. (2022-03)
    A Comparative Study on Environmental Performance of 3D Printing and Conventional Casting of Concrete Products with Industrial Wastes
  11. Ma Guowei, Buswell Richard, Silva Wilson, Wang Li et al. (2022-03)
    Technology Readiness:
    A Global Snapshot of 3D Concrete Printing and the Frontiers for Development
  12. Ma Guowei, Hu Tingyu, Wang Fang, Liu Xiongfei et al. (2023-02)
    Magnesium Phosphate Cement for Powder-Based 3D Concrete Printing:
    Systematic Evaluation and Optimization of Printability and Printing Quality
  13. Salet Theo, Ahmed Zeeshan, Bos Freek, Laagland Hans (2018-05)
    Design of a 3D Printed Concrete Bridge by Testing
  14. Soltan Daniel, Li Victor (2018-03)
    A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing
  15. Teng Fei, Li Mingyang, Zhang Dong, Li Heng et al. (2023-11)
    BIM-Enabled Collaborative-Robots 3D Concrete Printing to Construct MiC with Reinforcement
  16. Tinoco Matheus, Mendonça Érica, Fernandez Letízia, Caldas Lucas et al. (2022-04)
    Life Cycle Assessment and Environmental Sustainability of Cementitious Materials for 3D Concrete Printing:
    A Systematic Literature Review
  17. Weng Yiwei, Li Mingyang, Ruan Shaoqin, Wong Teck et al. (2020-03)
    Comparative Economic, Environmental and Productivity-Assessment of a Concrete Bathroom Unit Fabricated Through 3D Printing and a Pre-Cast Approach
  18. Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
    Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model
  19. Xu Nuoyan, Qian Ye, Yu Jing, Leung Christopher (2022-05)
    Tensile Performance of 3D Printed Strain-Hardening Cementitious Composites Considering Material-Parameters, Nozzle-Size and Printing-Pattern
  20. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
    Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete
  21. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-01)
    Fresh and Anisotropic-Mechanical Properties of 3D Printable Ultra-High-Ductile Concrete with Crumb-Rubber
  22. Ye Junhong, Teng Fei, Yu Jie, Yu Shiwei et al. (2023-08)
    Development of 3D Printable Engineered Cementitious Composites with Incineration-Bottom-Ash for Sustainable and Digital Construction
  23. Ye Junhong, Zhang Jiangdi, Yu Jie, Yu Jiangtao et al. (2023-11)
    Flexural Behaviors of 3D Printed Lightweight Engineered Cementitious Composites (ECC) Slab with Hollow Sections
  24. Yu Kequan, McGee Wesley, Ng Tsz, Zhu He et al. (2021-02)
    3D Printable Engineered Cementitious Composites:
    Fresh and Hardened Properties
  25. Zhang Ruo-Chen, Wang Li, Xue Xuan, Ma Guowei (2023-02)
    Environmental Profile of 3D Concrete Printing Technology in Desert Areas via Life Cycle Assessment
  26. Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
    Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction
  27. Zhu Binrong, Pan Jinlong, Zhou Zhenxin, Cai Jingming (2021-04)
    Mechanical Properties of Engineered Cementitious Composites Beams Fabricated by Extrusion-Based 3D

9 Citations

  1. Chen Wenguang, Yu Jie, Ye Junhong, Yu Jiangtao et al. (2025-11)
    3D Printed High-Performance Fiber-Reinforced Cementitious Composites:
    Fresh, Mechanical, and Microstructural Properties
  2. Varghese Renny, Rangel Bárbara, Maia Lino (2025-10)
    Strength, Structure, and Sustainability in 3D-Printed Concrete Using Different Types of Fiber Reinforcements
  3. Wang Yufei, Sun Junbo, Wang Xiangyu, Huang Bo et al. (2025-09)
    Environmental and Economic Evaluation of a Prefabricated 3D-Printed Structural Units Using Recycled Aggregates from Construction and Demolition Waste:
    A Case Study in China
  4. Wang Jiakang, Anwar Muhammad, Zhu Xingyi, Zhang Yating et al. (2025-07)
    Robust Optimization of Formulation Ratios for the Mechanical, Microstructural and Printing Performance of Cost-Effective 3D Printing Geopolymer
  5. Wang Qiang, Yang Wenwei, Wang Li, Bai Gang et al. (2025-03)
    Reinforcement Design and Structural Performance for the Topology Optimized 3D Printed Concrete Truss Beams
  6. Teng Fei, Xu Fengming, Yang Minxin, Yu Jie et al. (2025-02)
    Development of Sustainable Strain-Hardening Cementitious Composites Containing Diatomite for 3D Printing
  7. Kopitha Kirushnapillai, Rajeev Pathmanathan, Sanjayan Jay, Elakneswaran Yogarajah (2024-12)
    CO2 Sequestration and Low-Carbon-Strategies in 3D Printed Concrete
  8. Khan Mirza, Ahmed Aayzaz, Ali Tariq, Qureshi Muhammad et al. (2024-12)
    Comprehensive Review of 3D Printed Concrete, Life Cycle Assessment, AI and ML Models:
    Materials, Engineered Properties and Techniques for Additive Manufacturing
  9. Chen Baixi, Zhao Xueqi, Qian Xiaoping (2024-09)
    Voxel-Based Path-Driven 3D Concrete Printing Process Simulation Framework Embedding Inter-Layer Behavior

BibTeX
@article{ye_zhua_teng_yu.2024.CEAo3CPwECC,
  author            = "Junhong Ye and Zicheng Zhuang and Fei Teng and Jie Yu and Dong Zhang and Yiwei Weng",
  title             = "Comparative Environmental-Assessment of 3D Concrete Printing with Engineered Cementitious Composites",
  doi               = "10.1080/17452759.2024.2369249",
  year              = "2024",
  journal           = "Virtual and Physical Prototyping",
  volume            = "19",
  number            = "1",
}
Formatted Citation

J. Ye, Z. Zhuang, F. Teng, J. Yu, D. Zhang and Y. Weng, “Comparative Environmental-Assessment of 3D Concrete Printing with Engineered Cementitious Composites”, Virtual and Physical Prototyping, vol. 19, no. 1, 2024, doi: 10.1080/17452759.2024.2369249.

Ye, Junhong, Zicheng Zhuang, Fei Teng, Jie Yu, Dong Zhang, and Yiwei Weng. “Comparative Environmental-Assessment of 3D Concrete Printing with Engineered Cementitious Composites”. Virtual and Physical Prototyping 19, no. 1 (2024). https://doi.org/10.1080/17452759.2024.2369249.