Skip to content

Flexural Behaviors of 3D Printed Lightweight Engineered Cementitious Composites (ECC) Slab with Hollow Sections (2023-11)

10.1016/j.engstruct.2023.117113

 Ye Junhong, Zhang Jiangdi,  Yu Jie, Yu Jiangtao,  Yu Kequan
Journal Article - Engineering Structures, Vol. 299, No. 117113

Abstract

3D concrete printing (3DCP) is a form-free construction method that offers the potential to construct load-efficient structures with unique shapes. However, 3DCP currently lacks a compatible reinforcement method. This paper aims to print self-reinforced lightweight slabs using engineered cementitious composites (ECC). By introducing honeycomb-like (HS) and rectangular hollow sections (RS) into printed ECC slabs, the self-weight of HS and RS slabs is reduced by over 30.5% and 35.7%, respectively, compared to that of a solid slab. The flexural behaviors of the printed slabs were investigated via four-point bending test and finite element modeling. Experimental results show that the printed ECC slabs exhibit typical ductile failure even in the absence of steel reinforcement. The maximum flexural strength-to-mass ratio of HS and RS slabs approaches 0.049 MPa/kg, which almost equals to the value of solid slab. The numerical models were validated using the experimental results. Furthermore, parametric analysis reveals that bond strength higher than 1.5 MPa can achieve a stable flexural behavior for HS slab. The findings lay the groundwork for load-efficient and lightweight structural design by using ECC in 3DCP.

18 References

  1. Anton Ana-Maria, Bedarf Patrick, Yoo Angela, Dillenburger Benjamin et al. (2020-09)
    Concrete Choreography:
    Prefabrication of 3D Printed Columns
  2. Asprone Domenico, Auricchio Ferdinando, Menna Costantino, Mercuri Valentina (2018-03)
    3D Printing of Reinforced Concrete Elements:
    Technology and Design Approach
  3. Babafemi Adewumi, Kolawole John, Miah Md, Paul Suvash et al. (2021-06)
    A Concise Review on Inter-Layer Bond Strength in 3D Concrete Printing
  4. Borg Costanzi Christopher, Ahmed Zeeshan, Schipper Roel, Bos Freek et al. (2018-07)
    3D Printing Concrete on Temporary Surfaces:
    The Design and Fabrication of a Concrete Shell Structure
  5. Khajavi Siavash, Tetik Müge, Mohite Ashish, Peltokorpi Antti et al. (2021-04)
    Additive Manufacturing in the Construction Industry:
    The Comparative Competitiveness of 3D Concrete Printing
  6. Kreiger Eric, Kreiger Megan, Case Michael (2019-04)
    Development of the Construction Processes for Reinforced Additively Constructed Concrete
  7. Li Zhijian, Wang Li, Ma Guowei (2020-01)
    Mechanical Improvement of Continuous Steel-Micro-Cable-Reinforced Geopolymer Composites for 3D Printing Subjected to Different Loading Conditions
  8. Mechtcherine Viktor, Buswell Richard, Kloft Harald, Bos Freek et al. (2021-02)
    Integrating Reinforcement in Digital Fabrication with Concrete:
    A Review and Classification Framework
  9. Mechtcherine Viktor, Grafe Jasmin, Nerella Venkatesh, Spaniol Erik et al. (2018-05)
    3D Printed Steel-Reinforcement for Digital Concrete Construction:
    Manufacture, Mechanical Properties and Bond Behavior
  10. Nematollahi Behzad, Vijay Praful, Sanjayan Jay, Nazari Ali et al. (2018-11)
    Effect of Polypropylene Fiber Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction
  11. Soltan Daniel, Li Victor (2018-03)
    A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing
  12. Vantyghem Gieljan, Corte Wouter, Shakour Emad, Amir Oded (2020-01)
    3D Printing of a Post-Tensioned Concrete Girder Designed by Topology-Optimization
  13. Wang Li, Jiang Hailong, Li Zhijian, Ma Guowei (2020-02)
    Mechanical Behaviors of 3D Printed Lightweight Concrete Structure with Hollow Section
  14. Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
    Digital Concrete:
    A Review
  15. Weng Yiwei, Li Mingyang, Ruan Shaoqin, Wong Teck et al. (2020-03)
    Comparative Economic, Environmental and Productivity-Assessment of a Concrete Bathroom Unit Fabricated Through 3D Printing and a Pre-Cast Approach
  16. Xiao Jianzhuang, Liu Haoran, Ding Tao (2020-11)
    Finite-Element-Analysis on the Anisotropic Behavior of 3D Printed Concrete under Compression and Flexure
  17. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
    Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete
  18. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-01)
    Fresh and Anisotropic-Mechanical Properties of 3D Printable Ultra-High-Ductile Concrete with Crumb-Rubber

24 Citations

  1. Gil-Lopez Tomas, Amirfiroozkoohi Alireza, Valiente López María, Verdu-Vazquez Maria (2026-01)
    The Impact of 3D Printing on Mortar Strength and Flexibility:
    A Comparative Analysis of Conventional and Additive Manufacturing Techniques
  2. Zhu Binrong, Liu Xuhua, Wei Yang, Pan Jinlong (2025-11)
    Predicting the Tensile Performance of 3D-Printed PE Fiber-Reinforced ECC Based on Micromechanics Model
  3. Chen Wenguang, Yu Jie, Ye Junhong, Yu Jiangtao et al. (2025-11)
    3D Printed High-Performance Fiber-Reinforced Cementitious Composites:
    Fresh, Mechanical, and Microstructural Properties
  4. Delavar Mohammad, Aslani Farhad, Sercombe Tim (2025-10)
    Cracking Behaviour in 3D Concrete Printed Fiber-Reinforced Cementitious Composites:
    A Review
  5. Sun Hou-Qi, Zeng Jun-Jie, Xie Shan-Shan, Xia Jun-Run et al. (2025-09)
    Mechanical and Microstructural Characterization of Interlayer Bonding in Multi-Material 3D-Printed Concrete
  6. Lin Manfang, Ding Yao, Yu Fan, Li Lingzhi et al. (2025-08)
    Synergistic Strengthening of 3D‑printed ECC Beams Through Steel-Wire Mesh and Interfaces Treatments
  7. Motiani Ronak, Sylvain Saha, Dalal Sejal, Vora Jay et al. (2025-08)
    Innovative Reinforcement Techniques for 3D-Printed Concrete:
    The Impact of Shape Memory Alloys on Flexural Strength and Crack Mitigation
  8. Rousan Rajai, Alnemrawi Bara'a, Abdalla Khairedin, Alhassan Mohammad et al. (2025-06)
    The Flexural Behavior of Engineered Cementitious Composites (ECC) One-Way 3D Printed Slabs Made of Solid and Hollow Sections
  9. Sun Hou-Qi, Zeng Jun-Jie, Zhuge Yan, Liu Yue (2025-06)
    3D Printed Functionally Graded Concrete Plates:
    Concept and Bending Tests
  10. Hiremath Shivashankarayya, Mathapati Gururaj, Chiniwar Dundesh, Vishwanatha H. (2025-05)
    Performance Evaluation of Cementitious Composites by Designing an Extrusion System for Construction 3D Printing
  11. Chen Zhaohui, Yue Ziyi, Gerong Wangdui, Wang Zhenyue et al. (2025-05)
    Effect of Orthotropy and Printing Patterns on the Bending Performance of 3D Printed Concrete Grid Components
  12. Salaimanimagudam M., Jayaprakash Jaganathan (2025-04)
    Synergistic Potential of Topology Optimization and Lattice Structures in Concrete 3D Printed Beams
  13. Du Guoqiang, Sun Yan, Qian Ye (2025-03)
    In-Plane and Out-of-Plane Compressive Performance of Bio-Inspired 3D Printed Strain-Hardening Cementitious Composite Lattice Structures
  14. Sun Hou-Qi, Zeng Jun-Jie, Hong Guang-Yao, Zhuge Yan et al. (2025-01)
    3D Printed Functionally Graded Concrete Plates:
    Concept and Bending Behavior
  15. Khan Mirza, Ahmed Aayzaz, Ali Tariq, Qureshi Muhammad et al. (2024-12)
    Comprehensive Review of 3D Printed Concrete, Life Cycle Assessment, AI and ML Models:
    Materials, Engineered Properties and Techniques for Additive Manufacturing
  16. Liu Huawei, Wang Yifei, Zhu Chao, Wu Yiwen et al. (2024-11)
    Design of 3D Printed Concrete Masonry for Wall Structures:
    Mechanical Behavior and Strength Calculation Methods Under Various Loads
  17. Lin Manfang, Li Lingzhi, Jiang Fangming, Ding Yao et al. (2024-11)
    Automated Reinforcement of 3D Printed Engineered Cementitious Composite Beams
  18. Du Guoqiang, Qian Ye (2024-10)
    Bio-Inspired 3D Printing of Strain-Hardening Cementitious Composites Reticulated Shell-Roofs
  19. Du Guoqiang, Sun Yan, Qian Ye (2024-08)
    3D Printed Strain-Hardening Cementitious Composites (3DP-SHCC) Reticulated Shell Roof Inspired by the Water Spider
  20. Ye Junhong, Zhuang Zicheng, Teng Fei, Yu Jie et al. (2024-07)
    Comparative Environmental-Assessment of 3D Concrete Printing with Engineered Cementitious Composites
  21. Yan Kang-Tai, Wang Xian-Peng, Ding Yao, Li Lingzhi et al. (2024-06)
    3D Printed LC3-Based Lightweight Engineered Cementitious Composites:
    Fresh State, Hardened Material-Properties and Beam-Performance
  22. Chen Wenguang, Ye Junhong, Jiang Fangming, Fediuk Roman et al. (2024-05)
    Printability Region for 3D Printable Engineered Cementitious Composites
  23. Yan Kang-Tai, Li Lingzhi, Ye Junhong, Bazarov Dilshod et al. (2024-05)
    Anisotropic Size-Effect of 3D Printed LC3-Based Engineered Cementitious Composites
  24. Qiu Minghong, Qian Ye, Dai Jian-Guo (2024-05)
    Enhancing the Flexural Performance of Concrete Beams with 3D Printed UHP-SHCC Permanent Formwork via Graded Fiber Volume Fraction

BibTeX
@article{ye_zhan_yu_yu.2024.FBo3PLECCESwHS,
  author            = "Junhong Ye and Jiangdi Zhang and Jie Yu and Jiangtao Yu and Kequan Yu",
  title             = "Flexural Behaviors of 3D Printed Lightweight Engineered Cementitious Composites (ECC) Slab with Hollow Sections",
  doi               = "10.1016/j.engstruct.2023.117113",
  year              = "2024",
  journal           = "Engineering Structures",
  volume            = "299",
  pages             = "117113",
}
Formatted Citation

J. Ye, J. Zhang, J. Yu, J. Yu and K. Yu, “Flexural Behaviors of 3D Printed Lightweight Engineered Cementitious Composites (ECC) Slab with Hollow Sections”, Engineering Structures, vol. 299, p. 117113, 2024, doi: 10.1016/j.engstruct.2023.117113.

Ye, Junhong, Jiangdi Zhang, Jie Yu, Jiangtao Yu, and Kequan Yu. “Flexural Behaviors of 3D Printed Lightweight Engineered Cementitious Composites (ECC) Slab with Hollow Sections”. Engineering Structures 299 (2024): 117113. https://doi.org/10.1016/j.engstruct.2023.117113.