Skip to content

Influence of Limestone Calcined Clay on the Mechanical Behaviour of 3D Printed Engineered Cementitious Composites (2025-10)

10.1016/j.cemconcomp.2025.106366

 Wang Yuting, Chen Meng,  Zhang Tong,  Zhang Mingzhong
Journal Article - Cement and Concrete Composites, No. 106366

Abstract

Utilisation of engineered cementitious composites (ECC) for additive manufacturing can help improve the toughness and deformability of printed structures, while it is vital to further enhance its sustainability for engineering applications. In this study, limestone calcined clay was adopted as an alternative low-carbon binder to cement at replacement levels of 0, 30% 45% and 60% for 3D printed ECC. The mechanical properties of printed ECC based on limestone calcined clay cement (LC3) were systematically investigated. Results reveal that the tensile strength of printed ECC dropped but the strain capacity raised with increasing limestone calcined clay substitution. All printed LC3 based ECC exhibited strain hardening behaviour and have a tensile strain of over 2%. The compressive and flexural strengths of cast specimens declined with increasing limestone calcined clay content, while the strengths of printed counterparts improved when loaded in individual printed directions. Interlayer bonding strength of the printed LC3 based ECC in the horizontal direction reduced by 3.58%–8.32% while that in the vertical direction raised by 5.69%–9.64% than strengths of printed ordinary ECC. Fracture toughness of printed ECC significantly decreased with increasing limestone calcined clay substitution. Nevertheless, the interlayer fracture toughness of printed LC3 based ECC achieved 65% of the internal fracture toughness, where the bridging effect of fibres embedded in the interlayer resulted in an enhancement of interfacial performance. Overall, the printed ECC showed desirable mechanical properties due to the enhancement of ductility and interlayer bonding behaviour when the substitution of limestone calcined clay is below 45%.

39 References

  1. Bai Meiyan, Wu Yuching, Xiao Jianzhuang, Ding Tao et al. (2023-04)
    Workability and Hardened Properties of 3D Printed Engineered Cementitious Composites Incorporating Recycled Sand and PE-Fibers
  2. Bai Meiyan, Xiao Jianzhuang, Ding Tao, Yu Kequan (2024-12)
    Interfacial Bond-Properties Between 3D Printed Engineered Cementitious Composite and Post-Cast Concrete
  3. Bhattacherjee Shantanu, Jain Smrati, Santhanam Manu (2022-11)
    Criticality of Binder-Aggregate Interaction for Buildability of 3D Printed Concrete Containing Limestone-Calcined-Clay
  4. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  5. Chen Meng, Cheng Jianhua, Zhang Tong, Wang Yuting (2025-03)
    Experimental Characterization and Constitutive Modelling of the Anisotropic Dynamic Compressive Behavior of 3D Printed Engineered Cementitious Composites
  6. Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
    Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture
  7. Chen Yu, He Shan, Zhang Yu, Wan Zhi et al. (2021-08)
    3D Printing of Calcined-Clay-Limestone-Based Cementitious Materials
  8. Chen Yu, Jansen Koen, Zhang Hongzhi, Rodríguez Claudia et al. (2020-07)
    Effect of Printing-Parameters on Inter-Layer Bond Strength of 3D Printed Limestone-Calcined-Clay-Based Cementitious Materials:
    An Experimental and Numerical Study
  9. Chen Yuning, Jia Lutao, Liu Chao, Zhang Zedi et al. (2022-01)
    Mechanical Anisotropy Evolution of 3D Printed Alkali-Activated Materials with Different GGBFS-FA Combinations
  10. Chen Meng, Li Jiahui, Zhang Tong, Zhang Mingzhong (2025-01)
    3D Printability of Recycled Steel-Fiber-Reinforced Ultra-High-Performance Concrete
  11. Chen Wenguang, Liang Long, Zhou Boyang, Ye Junhong et al. (2025-02)
    A Fracture Mechanics Model for Predicting Tensile Strength and Fracture Toughness of 3D Printed Engineered Cementitious Composites
  12. Chen Wenguang, Ye Junhong, Jiang Fangming, Fediuk Roman et al. (2024-05)
    Printability Region for 3D Printable Engineered Cementitious Composites
  13. Chen Meng, Yu Kanghao, Zhang Tong, Wang Yuting (2025-01)
    Characterizing and Modelling the Bond-Slip-Behavior of Steel-Bars in 3D Printed Engineered Cementitious Composites
  14. Ibrahim Kamoru, Zijl Gideon, Babafemi Adewumi (2023-03)
    Influence of Limestone-Calcined-Clay-Cement on Properties of 3D Printed Concrete for Sustainable Construction
  15. Li Victor, Bos Freek, Yu Kequan, McGee Wesley et al. (2020-04)
    On the Emergence of 3D Printable Engineered, Strain-Hardening Cementitious Composites
  16. Long Wujian, Lin Can, Tao Jie-Lin, Ye Taohua et al. (2021-02)
    Printability and Particle-Packing of 3D Printable Limestone-Calcined-Clay-Cement Composites
  17. Luo Surong, Li Wenqiang, Wang Dehui (2024-05)
    Study on Bending Performance of 3D Printed PVA-Fiber-Reinforced Cement-Based Material
  18. Luo Surong, Lin Qian, Xu Wei, Wang Dehui (2023-03)
    Effects of Interval Time and Interfacial Agents on the Mechanical Characteristics of Ultra-High-Toughness Cementitious Composites Under 3D Printed Technology
  19. Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
    Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing
  20. Ma Guowei, Salman Nazar, Wang Li, Wang Fang (2020-02)
    A Novel Additive Mortar Leveraging Internal Curing for Enhancing Inter-Layer Bonding of Cementitious Composite for 3D Printing
  21. Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
    Extrusion-Based Additive Manufacturing with Cement-Based Materials:
    Production Steps, Processes, and Their Underlying Physics
  22. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  23. Soltan Daniel, Li Victor (2018-03)
    A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing
  24. Sun Hou-Qi, Zeng Jun-Jie, Hong Guang-Yao, Zhuge Yan et al. (2025-01)
    3D Printed Functionally Graded Concrete Plates:
    Concept and Bending Behavior
  25. Sun Bochao, Zeng Qiang, Wang Dianchao, Zhao Weijian (2022-10)
    Sustainable 3D Printed Mortar with CO2 Pretreated Recycled Fine Aggregates
  26. Tay Yi, Panda Biranchi, Paul Suvash, Mohamed Nisar et al. (2017-05)
    3D Printing Trends in Building and Construction Industry:
    A Review
  27. Teng Fei, Ye Junhong, Yu Jie, Li Heng et al. (2024-07)
    Development of Strain-Hardening Cementitious Composites (SHCC) As Bonding Materials to Enhance Inter-Layer and Flexural Performance of 3D Printed Concrete
  28. Wang Yuting, Chen Meng, Zhang Tong, Zhang Mingzhong (2024-07)
    Hardening Properties and Microstructure of 3D Printed Engineered Cementitious Composites Based on Limestone-Calcined-Clay-Cement
  29. Wangler Timothy, Roussel Nicolas, Bos Freek, Salet Theo et al. (2019-06)
    Digital Concrete:
    A Review
  30. Xu Nuoyan, Qian Ye (2023-04)
    Effects of Fiber-Volume Fraction, Fiber Length, Water-Binder Ratio, and Nano-Clay Addition on the 3D Printability of Strain-Hardening Cementitious Composites
  31. Yan Kang-Tai, Li Lingzhi, Ye Junhong, Bazarov Dilshod et al. (2024-05)
    Anisotropic Size-Effect of 3D Printed LC3-Based Engineered Cementitious Composites
  32. Yan Kang-Tai, Wang Xian-Peng, Ding Yao, Li Lingzhi et al. (2024-06)
    3D Printed LC3-Based Lightweight Engineered Cementitious Composites:
    Fresh State, Hardened Material-Properties and Beam-Performance
  33. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
    Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete
  34. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-01)
    Fresh and Anisotropic-Mechanical Properties of 3D Printable Ultra-High-Ductile Concrete with Crumb-Rubber
  35. Yu Kequan, McGee Wesley, Ng Tsz, Zhu He et al. (2021-02)
    3D Printable Engineered Cementitious Composites:
    Fresh and Hardened Properties
  36. Zhou Wen, Zhang Yamei, Ma Lei, Li Victor (2022-04)
    Influence of Printing Parameters on 3D Printing Engineered Cementitious Composites
  37. Zhou Wen, Zhu He, Hu Wei-Hsiu, Wollaston Ryan et al. (2024-02)
    Low-Carbon, Expansive Engineered Cementitious Composites (ECC) In the Context of 3D Printing
  38. Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
    Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction
  39. Zhu He, Yu Kequan, McGee Wesley, Ng Tsz et al. (2021-11)
    Limestone-Calcined-Clay-Cement for Three-Dimensional Printed Engineered Cementitious Composites

0 Citations

BibTeX
@article{wang_chen_zhan_zhan.2025.IoLCCotMBo3PECC,
  author            = "Yuting Wang and Meng Chen and Tong Zhang and Mingzhong Zhang",
  title             = "Influence of Limestone Calcined Clay on the Mechanical Behaviour of 3D Printed Engineered Cementitious Composites",
  doi               = "10.1016/j.cemconcomp.2025.106366",
  year              = "2025",
  journal           = "Cement and Concrete Composites",
  pages             = "106366",
}
Formatted Citation

Y. Wang, M. Chen, T. Zhang and M. Zhang, “Influence of Limestone Calcined Clay on the Mechanical Behaviour of 3D Printed Engineered Cementitious Composites”, Cement and Concrete Composites, p. 106366, 2025, doi: 10.1016/j.cemconcomp.2025.106366.

Wang, Yuting, Meng Chen, Tong Zhang, and Mingzhong Zhang. “Influence of Limestone Calcined Clay on the Mechanical Behaviour of 3D Printed Engineered Cementitious Composites”. Cement and Concrete Composites, 2025, 106366. https://doi.org/10.1016/j.cemconcomp.2025.106366.