Skip to content

Upcycling Coal Gangue Coarse Aggregates into 3D Printed Concrete (2025-08)

Multi-Scale Mechanisms of Fracture Behaviour

10.1016/j.cemconcomp.2025.106275

Geng Shao-bo, Zhang Chen,  Zhang Hui, Hai Lu,  Huang Bo-Tao, Han Yuan-Shan, Du Chuan-Xin,  Huang Yujie
Journal Article - Cement and Concrete Composites, Vol. 164, No. 106275

Abstract

The advent of 3D printed concrete (3DPC) has transformed construction industrialization, especially in the context of intelligent construction. Nevertheless, conventional cement-based printable materials, mainly composed of extrusion-adapted mortar without coarse aggregates, exhibit low stiffness, high shrinkage cracking potential, and excessive cement dependence, compromising sustainability and increasing carbon footprints. This study introduces the first use of coal gangue as a sustainable coarse aggregate in 3D printed coal gangue concrete (3DP-CC), offering an innovative strategy for upcycling coal mining waste into printable construction materials. We systematically perform uniaxial compression, three-point bending, interlayer bonding tests, and micro X-ray CT to evaluate the multi-scale mechanical behaviour of 3DP-CC with varying coal gangue contents. Key findings include: (1) Pore structure evolves with coal gangue content, with total porosity first decreasing (to 1.8% at 10% content) then increasing (to 3.4% at 40% content), driven by aggregate skeleton and fine aggregate filling; (2) 3DP-CC’s compressive strength anisotropy is reduced compared to printed mortar due to aggregate interlocking, whereas flexural strength anisotropy increases as a result of pore accumulation and weak interlayers; at equal coarse aggregate content, 3DP-CC exhibits lower compressive anisotropy than printed natural aggregate concrete; (3) Compressive and flexural strengths increase initially and peak at 10%–20% coal gangue content, with values in all directions surpassing those of printed concrete with 40% natural aggregate. This work quantifies relationships between coal gangue content, structural anisotropy, and fracture resistance, offering actionable insights for industrial upcycling of coal wastes and addressing key challenges in eco-friendly 3D concrete printing.

37 References

  1. Bhattacherjee Shantanu, Santhanam Manu (2022-04)
    Investigation on the Effect of Alkali-Free Aluminium Sulfate-Based Accelerator on the Fresh Properties of 3D Printable Concrete
  2. Cai Jianguo, Wang Jingsong, Zhang Qian, Du Caixia et al. (2024-10)
    State of the Art of Mechanical Properties of 3D Printed Concrete
  3. Chen Yuxuan, Zhang Longfei, Wei Kai, Gao Huaxing et al. (2024-04)
    Rheology-Control and Shrinkage-Mitigation of 3D Printed Geopolymer Concrete Using Nano-Cellulose and Magnesium-Oxide
  4. Chen Yidong, Zhang Yunsheng, Zhang Yu, Pang Bo et al. (2023-08)
    Influence of Gradation on Extrusion-Based 3D Printing Concrete with Coarse Aggregate
  5. Hossain Md., Zhumabekova Altynay, Paul Suvash, Kim Jong (2020-10)
    A Review of 3D Printing in Construction and Its Impact on the Labor Market
  6. Jia Lutao, Dong Enlai, Xia Kailun, Niu Geng et al. (2025-04)
    Initial Plastic Shrinkage of 3D-Printed Concrete Incorporating Recycled Brick Fine Aggregates:
    Insights from Water Transport and Structural Evolution
  7. Liu Bing, Chen Yuwen, Li Dongdong, Wang Yang et al. (2024-09)
    Study on the Fracture Behavior and Anisotropy of 3D Printing PVA-Fiber-Reinforced Concrete
  8. Liu Huawei, Liu Chao, Bai Guoliang, Wu Yiwen et al. (2022-04)
    Influence of Pore-Defects on the Hardened Properties of 3D Printed Concrete with Coarse Aggregate
  9. Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-09)
    3D Printing Concrete with Recycled Coarse Aggregates:
    The Influence of Pore-Structure on Inter-Layer Adhesion
  10. Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-06)
    Hardened Properties of 3D Printed Concrete with Recycled Coarse Aggregate
  11. Liu Junli, Setunge Sujeeva, Tran Jonathan (2022-07)
    3D Concrete Printing with Cement-Coated Recycled Crumb Rubber:
    Compressive and Microstructural Properties
  12. Liu Xuanting, Sun Bohua (2021-11)
    The Influence of Interface on the Structural Stability in 3D Concrete Printing Processes
  13. Liu Chao, Wang Xianggang, Chen Yuning, Zhang Chao et al. (2021-06)
    Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete
  14. Liu Yi, Wang Li, Yuan Qiang, Peng Jianwei (2023-09)
    Effect of Coarse Aggregate on Printability and Mechanical Properties of 3D Printed Concrete
  15. Nakase Kota, Hashimoto Katsufumi, Sugiyama Takafumi, Kono Katsuya (2024-06)
    Influence of Print Paths on Mechanical Properties and Fracture Propagation of 3D Printed Concrete
  16. Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
    Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing
  17. Panda Biranchi, Tan Ming (2018-03)
    Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing
  18. Pi Yilin, Lu Cong, Li Baoshan, Zhou Junhui (2023-10)
    Crack Propagation and Failure Mechanism of 3D Printing Engineered Cementitious Composites (3DP-ECC) Under Bending Loads
  19. Rahman Mahfuzur, Rawat Sanket, Yang Chunhui, Mahil Ahmed et al. (2024-05)
    A Comprehensive Review on Fresh and Rheological Properties of 3D Printable Cementitious Composites
  20. Rahul Attupurathu, Santhanam Manu (2020-02)
    Evaluating the Printability of Concretes Containing Lightweight Coarse Aggregates
  21. Rubin Ariane, Quintanilha Lucas, Repette Wellington (2022-11)
    Influence of Structuration-Rate, with Hydration-Accelerating Admixture, on the Physical and Mechanical Properties of Concrete for 3D Printing
  22. Sun Junbo, Liu Shukui, Ma Zhangguo, Wang Di et al. (2024-03)
    3D Printed Lightweight Concrete Containing Surface-Pretreated Coal-Gangue
  23. Sun Xiaoyan, Zhou Jiawei, Wang Qun, Shi Jiangpeng et al. (2021-11)
    PVA-Fiber-Reinforced High-Strength Cementitious Composite for 3D Printing:
    Mechanical Properties and Durability
  24. Tay Yi, Panda Biranchi, Paul Suvash, Mohamed Nisar et al. (2017-05)
    3D Printing Trends in Building and Construction Industry:
    A Review
  25. Wang Xianggang, Jia Lutao, Jia Zijian, Zhang Chao et al. (2022-06)
    Optimization of 3D Printing Concrete with Coarse Aggregate via Proper Mix-Design and Printing-Process
  26. Wang Li, Ma Guowei, Liu Tianhao, Buswell Richard et al. (2021-07)
    Inter-Layer Reinforcement of 3D Printed Concrete by the In-Process Deposition of U-Nails
  27. Wang Hailong, Shen Wenbin, Sun Xiaoyan, Song Xinlei et al. (2025-01)
    Influences of Particle-Size on the Performance of 3D Printed Coarse Aggregate Concrete:
    Experiment, Microstructure, and Mechanism Analysis
  28. Wang Li, Ye Kehan, Wan Qian, Li Zhijian et al. (2023-05)
    Inclined 3D Concrete Printing:
    Build-Up Prediction and Early-Age Performance-Optimization
  29. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  30. Wu Yiwen, Liu Chao, Liu Huawei, Bai Guoliang et al. (2024-07)
    Mechanism of the Influence of Multi-Scale Pore-Structure on the Triaxial Mechanical Properties of 3D Printed Concrete with Recycled Sand
  31. Xia Kailun, Chen Yuning, Chen Yu, Jia Lutao et al. (2025-04)
    Programmable Toughening for 3D Printed Concrete and Architected Cementitious Materials
  32. Xiao Jianzhuang, Hou Shaodan, Duan Zhenhua, Zou Shuai (2023-01)
    Rheology of 3D Printable Concrete Prepared by Secondary Mixing of Ready-Mix Concrete
  33. Yalçınkaya Çağlar (2022-03)
    Influence of Hydroxypropyl Methylcellulose Dosage on the Mechanical Properties of 3D Printable Mortars with and without Fiber-Reinforcement
  34. Yu Kequan, McGee Wesley, Ng Tsz, Zhu He et al. (2021-02)
    3D Printable Engineered Cementitious Composites:
    Fresh and Hardened Properties
  35. Yue J., Beskos Dimitrios, Feng C., Wu Kai (2022-11)
    Hardened Fracture Characteristics of Printed Concrete Using Acoustic Emission Monitoring Technique
  36. Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
    A Review of the Current Progress and Application of 3D Printed Concrete
  37. Zuo Zibo, Zhang Yamei, Li Jin, Huang Yulin et al. (2025-03)
    Systematic Workflow for Digital Design and On-Site 3D Printing of Large Concrete Structures:
    A Case Study of a Full-Size Two-Story Building

2 Citations

  1. Sun Yan, Du Guoqiang, Deng Xiaowei, Qian Ye (2026-01)
    Enhancing Fiber Alignment and Tensile Properties of 3D-Printed Ultra-High Performance Strain-Hardening Cementitious Composites by Nozzle Channel Design
  2. Ding Yao, Liu Yifan, Yang Bo, Liu Jiepeng et al. (2026-01)
    Application of Artificial Intelligence Technology in 3D Concrete Printing Quality Inspection and Control:
    A State-of-the-Art Review

BibTeX
@article{geng_zhan_zhan_hai.2025.UCGCAi3PC,
  author            = "Shao-bo Geng and Chen Zhang and Hui Zhang and Lu Hai and Bo-Tao Huang and Yuan-Shan Han and Chuan-Xin Du and Yujie Huang",
  title             = "Upcycling Coal Gangue Coarse Aggregates into 3D Printed Concrete: Multi-Scale Mechanisms of Fracture Behaviour",
  doi               = "10.1016/j.cemconcomp.2025.106275",
  year              = "2025",
  journal           = "Cement and Concrete Composites",
  volume            = "164",
  pages             = "106275",
}
Formatted Citation

S.-. bo . Geng, “Upcycling Coal Gangue Coarse Aggregates into 3D Printed Concrete: Multi-Scale Mechanisms of Fracture Behaviour”, Cement and Concrete Composites, vol. 164, p. 106275, 2025, doi: 10.1016/j.cemconcomp.2025.106275.

Geng, Shao-bo, Chen Zhang, Hui Zhang, Lu Hai, Bo-Tao Huang, Yuan-Shan Han, Chuan-Xin Du, and Yujie Huang. “Upcycling Coal Gangue Coarse Aggregates into 3D Printed Concrete: Multi-Scale Mechanisms of Fracture Behaviour”. Cement and Concrete Composites 164 (2025): 106275. https://doi.org/10.1016/j.cemconcomp.2025.106275.