Skip to content

A Comprehensive Review on 3D Printing of Concrete (2025-07)

Materials, Methods and Mechanical Properties

10.1007/978-981-96-0746-4_1

Ali Syed,  ul Haq Mohd, Khan Rizwan, Hashmi Ahmad
Contribution - Proceedings of the 3rd International Conference on Advances in Concrete, Structural, and Geotechnical Engineering, pp. 1-19

Abstract

3D printing concrete (3DPC) is undoubtedly an astonishing construction technology having good socio-economic impacts in future. Looking back to past, originally this technology came into picture in 1980 which was initially sophisticated to minor products but later it laid its foundation in the areas of construction. In this paper, a comprehensive review is presented focussing on various materials and techniques being used for printing the concrete while making comparsion and discussing on merits and demerits. The effect of admixtures has also been compared along with efficiency standard required for 3D printing concrete (3DPC). The mix proportioning used for making the printable concrete with their mechanical behaviour and printing methodology are also compared. Future perspective and recommendations are also illustrated with advantages and disadvantage of technique’s application that will be helpful for the researchers and engineers.

54 References

  1. Ahmed Ghafur, Askandar Nasih, Jumaa Ghazi (2022-07)
    A Review of Large-Scale 3DCP:
    Material-Characteristics, Mix-Design, Printing-Process, and Reinforcement-Strategies
  2. Alchaar Aktham, Tamimi Adil (2020-10)
    Mechanical Properties of 3D Printed Concrete in Hot Temperatures
  3. Bai Gang, Wang Li, Ma Guowei, Sanjayan Jay et al. (2021-03)
    3D Printing Eco-Friendly Concrete Containing Under-Utilised and Waste Solids as Aggregates
  4. Bhattacherjee Shantanu, Basavaraj Anusha, Rahul Attupurathu, Santhanam Manu et al. (2021-06)
    Sustainable Materials for 3D Concrete Printing
  5. Cicione Antonio, Kruger Jacques, Walls Richard, Zijl Gideon (2020-05)
    An Experimental Study of the Behavior of 3D Printed Concrete at Elevated Temperatures
  6. Deng Zhicong, Jia Zijian, Zhang Chao, Wang Zhibin et al. (2022-10)
    3D Printing Lightweight Aggregate Concrete Prepared with Shell-Packing-Aggregate Method:
    Printability, Mechanical Properties and Pore-Structure
  7. Feng Peng, Meng Xinmiao, Chen Jian-Fei, Ye Lieping (2015-06)
    Mechanical Properties of Structures 3D Printed with Cementitious Powders
  8. Heras Murica Daniel, Genedy Moneeb, Taha Mahmoud (2020-09)
    Examining the Significance of Infill-Printing-Pattern on the Anisotropy of 3D Printed Concrete
  9. Hirayama Yuta, Zhang Jiali, Kawahara Yoshihiro (2019-06)
    A Method to Evaluate the Formability and Fluidity of Concrete-Based Materials for 3D Printing
  10. Hossain Md., Zhumabekova Altynay, Paul Suvash, Kim Jong (2020-10)
    A Review of 3D Printing in Construction and Its Impact on the Labor Market
  11. Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
    A Review of 3D Printed Concrete:
    Performance-Requirements, Testing Measurements and Mix-Design
  12. Ingaglio Joseph, Fox John, Naito Clay, Bocchini Paolo (2019-02)
    Material-Characteristics of Binder-Jet 3D Printed Hydrated CSA Cement with the Addition of Fine Aggregates
  13. Joh Changbin, Lee Jungwoo, Bui The, Park Jihun et al. (2020-11)
    Buildability and Mechanical Properties of 3D Printed Concrete
  14. Khan Mohammad, Sanchez Florence, Zhou Hongyu (2020-04)
    3D Printing of Concrete:
    Beyond Horizons
  15. Khoshnevis Behrokh (2003-11)
    Automated Construction by Contour Crafting:
    Related Robotics and Information Technologies
  16. Krishnaraja A., Guru K. (2021-02)
    3D Printing Concrete:
    A Review
  17. Kruger Jacques, Plessis Anton, Zijl Gideon (2020-12)
    An Investigation into the Porosity of Extrusion-Based 3D Printed Concrete
  18. Lachmayer Lukas, Dörrie Robin, Kloft Harald, Raatz Annika (2021-11)
    Automated Shotcrete 3D Printing:
    Printing Interruption for Extended Component Complexity
  19. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  20. Lesovik Valeriy, Tolstoy Aleksandr, Fediuk Roman, Amran Mugahed et al. (2022-08)
    Improving the Performances of a Mortar for 3D Printing by Mineral Modifiers
  21. Liu Chenkang, Yue Songlin, Zhou Cong, Sun Honglei et al. (2021-08)
    Anisotropic Mechanical Properties of Extrusion-Based 3D Printed Layered Concrete
  22. Long Wujian, Tao Jie-Lin, Lin Can, Gu Yucun et al. (2019-08)
    Rheology and Buildability of Sustainable Cement-Based Composites Containing Micro-Crystalline Cellulose for 3D Printing
  23. Lu Bing, Weng Yiwei, Li Mingyang, Qian Ye et al. (2019-02)
    A Systematical Review of 3D Printable Cementitious Materials
  24. Luhar Salmabanu, Suntharalingam Thadshajini, Navaratnam Satheeskumar, Luhar Ismail et al. (2020-12)
    Sustainable and Renewable Bio-Based Natural Fibers and Its Application for 3D Printed Concrete:
    A Review
  25. Lyu Fuyan, Zhao Dongliang, Hou Xiaohui, Sun Li et al. (2021-10)
    Overview of the Development of 3D Printing Concrete:
    A Review
  26. Ma Guowei, Wang Li (2017-08)
    A Critical Review of Preparation Design and Workability Measurement of Concrete Material for Large-Scale 3D Printing
  27. Meurer Maximilian, Claßen Martin (2021-02)
    Mechanical Properties of Hardened 3D Printed Concretes and Mortars:
    Development of a Consistent Experimental Characterization-Strategy
  28. Nair Sooraj, Panda Subhashree, Santhanam Manu, Sant Gaurav et al. (2020-05)
    A Critical Examination of the Influence of Material-Characteristics and Extruder-Geometry on 3D Printing of Cementitious Binders
  29. Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
    Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing
  30. Nerella Venkatesh, Mechtcherine Viktor (2019-02)
    Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology (CONPrint3D)
  31. Nodehi Mehrab, Ozbakkaloglu Togay, Gholampour Aliakbar (2022-04)
    Effect of Supplementary Cementitious Materials on Properties of 3D Printed Conventional and Alkali-Activated Concrete:
    A Review
  32. Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
    A Review of 3D Concrete Printing Systems and Materials Properties:
    Current Status and Future Research Prospects
  33. Pegna Joseph (1997-02)
    Exploratory Investigation of Solid Freeform Construction
  34. Raphael Benny, Senthilnathan Shanmugaraj, Patel Abhishek, Bhat Saqib (2023-01)
    A Review of Concrete 3D Printed Structural Members
  35. Robayo-Salazar Rafael, Gutiérrez Ruby, Villaquirán-Caicedo Mónica, Delvasto Arjona Silvio (2022-12)
    3D Printing with Cementitious Materials:
    Challenges and Opportunities for the Construction Sector
  36. Şahin Hatice, Mardani Ali (2021-12)
    Assessment of Materials, Design Parameters and Some Properties of 3D Printing Concrete Mixtures:
    A State of the Art Review
  37. Salman Nazar, Ma Guowei, Ijaz Nauman, Wang Li (2021-04)
    Importance and Potential of Cellulosic Materials and Derivatives in Extrusion-Based 3D Concrete Printing:
    Prospects and Challenges
  38. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  39. Siddika Ayesha, Mamun Md., Ferdous Wahid, Saha Ashish et al. (2019-12)
    3D Printed Concrete:
    Applications, Performance, and Challenges
  40. Sikora Paweł, Chougan Mehdi, Cuevas Villalobos Karla, Liebscher Marco et al. (2021-02)
    The Effects of Nano- and Micro-Sized Additives on 3D Printable Cementitious and Alkali-Activated Composites:
    A Review
  41. Teixeira João, Schaefer Cecília, Rangel Bárbara, Maia Lino et al. (2022-11)
    A Road Map to Find in 3D Printing a New Design Plasticity for Construction:
    The State of Art
  42. Wang Li, Lin Wenyu, Ma Hui, Li Dexin et al. (2022-09)
    Mechanical and Microstructural Properties of 3D Printed Aluminate-Cement-Based Composite Exposed to Elevated Temperatures
  43. Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
    Large-Scale 3D Printing Concrete Technology:
    Current Status and Future Opportunities
  44. Xu Weiguo, Gao Yuan, Sun Chenwei, Wang Zhi (2020-09)
    Fabrication and Application of 3D Printed Concrete Structural Components in the Boshan Pedestrian Bridge Project
  45. Yang Huashan, Che Yujun, Shi Mengyuan (2021-07)
    Influences of Calcium-Carbonate-Nano-Particles on the Workability and Strength of 3D Printing Cementitious Materials Containing Limestone-Powder
  46. Yang Huashan, Li Weiwei, Che Yujun (2020-08)
    3D Printing Cementitious Materials Containing Nano-CaCO3:
    Workability, Strength, and Microstructure
  47. Yang Liming, Sepasgozar Samad, Shirowzhan Sara, Kashani Alireza et al. (2022-12)
    Nozzle Criteria for Enhancing Extrudability, Buildability and Inter-Layer Bonding in 3D Printing Concrete
  48. Yao Hao, Xie Zonglin, Li Zemin, Huang Chuhan et al. (2021-11)
    The Relationship Between the Rheological Behavior and Inter-Layer Bonding Properties of 3D Printing Cementitious Materials with the Addition of Attapulgite
  49. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
    Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete
  50. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-01)
    Fresh and Anisotropic-Mechanical Properties of 3D Printable Ultra-High-Ductile Concrete with Crumb-Rubber
  51. Yu Shiwei, Du Hongjian, Sanjayan Jay (2020-07)
    Aggregate-Bed 3D Concrete Printing with Cement-Paste Binder
  52. Zahabizadeh Behzad, Pereira João, Gonçalves Claúdia, Pereira Eduardo et al. (2021-03)
    Influence of the Printing-Direction and Age on the Mechanical Properties of 3D Printed Concrete
  53. Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
    Mix-Design Concepts for 3D Printable Concrete:
    A Review
  54. Zhang Yu, Zhang Yunsheng, Yang Lin, Liu Guojian et al. (2021-02)
    Hardened Properties and Durability of Large-Scale 3D Printed Cement-Based Materials

0 Citations

BibTeX
@inproceedings{ali_haq_khan_hash.2025.ACRo3PoC,
  author            = "Syed Sufiyan Ali and Mohd Moin ul Haq and Rizwan Ahmad Khan and Ahmad Fuzail Hashmi",
  title             = "A Comprehensive Review on 3D Printing of Concrete: Materials, Methods and Mechanical Properties",
  doi               = "10.1007/978-981-96-0746-4_1",
  year              = "2025",
  volume            = "29",
  pages             = "1--19",
  booktitle         = "Proceedings of the 3rd International Conference on Advances in Concrete, Structural, and Geotechnical Engineering",
  editor            = "Shamsher Bahadur Singh and Muthukumar Gopalarathnam and Nishant Roy",
}
Formatted Citation

S. S. Ali, M. M. ul Haq, R. A. Khan and A. F. Hashmi, “A Comprehensive Review on 3D Printing of Concrete: Materials, Methods and Mechanical Properties”, in Proceedings of the 3rd International Conference on Advances in Concrete, Structural, and Geotechnical Engineering, 2025, vol. 29, pp. 1–19. doi: 10.1007/978-981-96-0746-4_1.

Ali, Syed Sufiyan, Mohd Moin ul Haq, Rizwan Ahmad Khan, and Ahmad Fuzail Hashmi. “A Comprehensive Review on 3D Printing of Concrete: Materials, Methods and Mechanical Properties”. In Proceedings of the 3rd International Conference on Advances in Concrete, Structural, and Geotechnical Engineering, edited by Shamsher Bahadur Singh, Muthukumar Gopalarathnam, and Nishant Roy, 29:1–19, 2025. https://doi.org/10.1007/978-981-96-0746-4_1.