Skip to content

Quantitative Evaluation for Fracture Properties of 3D Printed Ultra-High-Performance Concrete Loaded in Different Directions (2025-05)

10.1016/j.cemconcomp.2025.106110

Yang Shutong,  Chen Zhengyuan,  Lan Tian, Yang Tiange
Journal Article - Cement and Concrete Composites, Vol. 162, No. 106110

Abstract

The integration of ultra-high-performance concrete (UHPC) with 3D printing technology introduces the revolutionary potential, offering exceptional mechanical properties, enhanced design flexibility, and automated construction processes. However, without additional reinforcement, the fracture performance of 3D-printed UHPC (3DP-UHPC) becomes critical to the crack resistance structures. To address the gaps in existing research, this study developed a closed-form fracture model to evaluate its fracture properties in varying loading conditions and copper-plated straight steel fiber dosages. The fracture mechanisms of 3DP-UHPC under different loading directions were systematically analyzed using fracture tests on 155 beams. By introducing the meso-structural characteristic parameter (Cch) and discrete coefficients indicating the heterogeneity and discontinuity of 3DP-UHPC, the fracture model was developed allowing for determining size-independent tensile strength (ft) and fracture toughness (KIC). The results revealed that Cch proved to be the average aggregate size for specimens loaded aligned with the printing direction and the average fiber spacing in other loading directions. The fracture properties of 3DP-UHPC exhibited pronounced directional dependency, with ft and KIC significantly higher when the specimens were loaded in the vertical direction of the printing compared to parallel loading. The fibers substantially improved the fracture resistance, particularly at the 1.5 % dosage, where fibers aligned perpendicular to the cracked section contributed most to crack resistance, achieving ft of 49.43 MPa and KIC of 5.28 MPa∙m½. The reliability of the model was statistically validated by incorporating results of specimens with varying notch-to-height ratios and heights into the normality analysis, confirming the size independence of the derived fracture parameters.

45 References

  1. Ahmed Ghafur (2023-01)
    A Review of 3D Concrete Printing:
    Materials and Process Characterization, Economic Considerations and Environmental Sustainability
  2. Arunothayan Arun, Nematollahi Behzad, Khayat Kamal, Ramesh Akilesh et al. (2022-11)
    Rheological Characterization of Ultra-High-Performance Concrete for 3D Printing
  3. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2020-10)
    Development of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete for Digital Construction
  4. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
    Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing
  5. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Khayat Kamal et al. (2021-10)
    Digital Fabrication of Eco-Friendly Ultra-High-Performance Fiber-Reinforced Concrete
  6. Arunothayan Arun, Sanjayan Jay (2023-01)
    Elevated Temperature Effects on 3D Printed Ultra-High-Performance Concrete
  7. Bai Gang, Guan Jingyuan, Wang Li, Li Zhijian et al. (2024-07)
    Bending Performance of 3D Printed Ultra-High-Performance Concrete Composite Beams
  8. Bai Gang, Wang Li, Wang Fang, Ma Guowei (2021-08)
    In-Process Reinforcing Method:
    Dual 3D Printing Procedure for Ultra-High-Performance Concrete Reinforced Cementitious Composites
  9. Bai Gang, Wang Li, Wang Fang, Ma Guowei (2022-12)
    Assessing Printing Synergism in a Dual 3D Printing System for Ultra-High-Performance Concrete In-Process Reinforced Cementitious Composite
  10. Bester Frederick, Heever Marchant, Kruger Jacques, Zijl Gideon (2020-11)
    Reinforcing Digitally Fabricated Concrete:
    A Systems Approach Review
  11. Cai Jianguo, Wang Jingsong, Zhang Qian, Du Caixia et al. (2024-10)
    State of the Art of Mechanical Properties of 3D Printed Concrete
  12. Chen Wei, Pan Jinlong, Zhu Binrong, Ma XiaoMeng et al. (2023-06)
    Improving Mechanical Properties of 3D Printable One-Part Geopolymer Concrete with Steel-Fiber-Reinforcement
  13. Chen Zhengyuan, Yang Shutong, Liu Qi, Xu Mingqi et al. (2024-03)
    Closed-Form Fracture-Model for Evaluating Crack-Resistance of 3D Printed Fiber-Reinforced Alkali-Activated Slag/Fly-Ash Recycled-Sand Concrete
  14. Ding Tao, Xiao Jianzhuang, Mechtcherine Viktor (2023-05)
    Microstructure and Mechanical Properties of Inter-Layer Regions in Extrusion-Based 3D Printed Concrete:
    A Critical Review
  15. Dong Enlai, Jia Zijian, Jia Lutao, Rao Suduan et al. (2024-10)
    Modeling Fiber-Alignment in 3D Printed Ultra-High-Performance Concrete Based on Stereology-Theory
  16. Dong Liang, Yang Yekai, Liu Zhongxian, Ren Quanchang et al. (2022-07)
    Microstructure and Mechanical Behavior of 3D Printed Ultra-High-Performance Concrete after Elevated Temperatures
  17. Dong Liang, Yang Yekai, Liu Zhongxian, Zhang Yan et al. (2024-06)
    Interface Bonding Characteristics of 3D Printed Ultra-High-Performance Concrete After Elevated Temperatures
  18. Fan Dingqiang, Zhu Jinyun, Fan Mengxin, Lu Jianxian et al. (2023-04)
    Intelligent Design and Manufacturing of Ultra-High-Performance Concrete:
    A Review
  19. Geng Zifan, Pan Hao, Zuo Wenqiang, She Wei (2022-05)
    Functionally Graded Lightweight Cement-Based Composites with Outstanding Mechanical Performances via Additive Manufacturing
  20. Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
    Large-Scale 3D Printing of Ultra-High-Performance Concrete:
    A New Processing Route for Architects and Builders
  21. Jia Zijian, Kong Lingyu, Jia Lutao, Ma Lei et al. (2024-04)
    Printability and Mechanical Properties of 3D Printing Ultra-High-Performance Concrete Incorporating Limestone-Powder
  22. Lee Yoon, Lee Sang, Kim Jae, Jeong Hoseong et al. (2024-07)
    Inter-Layer Bond Strength of 3D Printed Concrete Members with Ultra-High-Performance Concrete Mix
  23. Liu Bing, Chen Yuwen, Li Dongdong, Wang Yang et al. (2024-09)
    Study on the Fracture Behavior and Anisotropy of 3D Printing PVA-Fiber-Reinforced Concrete
  24. Liu Junli, Li Shuai, Gunasekara Chamila, Fox Kate et al. (2021-11)
    3D Printed Concrete with Recycled Glass:
    Effect of Glass Gradation on Flexural Strength and Microstructure
  25. Liu Dawei, Zhang Zhigang, Zhang Xiaoyue, Chen Zhaohui (2023-09)
    3D Printing Concrete Structures:
    State of the Art, Challenges, and Opportunities
  26. Lyu Qifeng, Dai Pengfei, Chen Anguo (2023-10)
    Mechanical Strengths and Optical Properties of Translucent Concrete Manufactured by Mortar-Extrusion 3D Printing with Polymethyl-Methacrylate Fibers
  27. Ma Guowei, Bai Gang, Wang Li, Wang Fang (2022-07)
    Explosion-Resistance of 3D Printing Ultra-High-Performance Concrete Based on Contact-Explosion Tests
  28. Nair Sooraj, Tripathi Avinaya, Neithalath Narayanan (2021-09)
    Examining Layer-Height Effects on the Flexural and Fracture Response of Plain and Fiber-Reinforced 3D Printed Beams
  29. Pham Luong, Tran Jonathan, Sanjayan Jay (2020-04)
    Steel-Fiber-Reinforced 3D Printed Concrete:
    Influence of Fiber Sizes on Mechanical Performance
  30. Riaz Raja, Usman Muhammad, Ali Ammar, Majid Usama et al. (2023-06)
    Inclusive Characterization of 3D Printed Concrete in Additive Manufacturing:
    A Detailed Review
  31. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  32. Tang Yuxiang, Xiao Jianzhuang, Ding Tao, Liu Haoran et al. (2024-01)
    Trans-Layer and Inter-Layer Fracture Behavior of Extrusion-Based 3D Printed Concrete Under Three-Point Bending
  33. Wu Yun-Chen, Li Mo (2022-09)
    Effects of Early-Age Rheology and Printing Time Interval on Late-Age Fracture Characteristics of 3D Printed Concrete
  34. Yan Zitong, Zeng Jun-Jie, Zhuge Yan, Liao Jinjing et al. (2023-12)
    Compressive Behavior of FRP-Confined 3D Printed Ultra-High-Performance Concrete Cylinders
  35. Yang Shutong, Lan Tian, Sun Zhongke, Xu Mingqi et al. (2022-03)
    A Predictive Model to Determine Tensile Strength and Fracture-Toughness of 3D Printed Fiber-Reinforced Concrete Loaded in Different Directions
  36. Yang Yekai, Wu Chengqing, Liu Zhongxian (2023-01)
    Rate-Dependent Behavior of 3D Printed Ultra-High-Performance Fiber-Reinforced Concrete Under Dynamic Splitting Tensile
  37. Yang Yekai, Wu Chengqing, Liu Zhongxian, Li Jun et al. (2022-02)
    Characteristics of 3D Printing Ultra-High-Performance Fiber-Reinforced Concrete Under Impact Loading
  38. Yang Yekai, Wu Chengqing, Liu Zhongxian, Wang Hailiang et al. (2021-10)
    Mechanical Anisotropy of Ultra-High-Performance Fiber-Reinforced Concrete for 3D Printing
  39. Yang Yekai, Wu Chengqing, Liu Zhongxian, Zhang Hai (2021-12)
    3D Printing Ultra-High-Performance Fiber-Reinforced Concrete under Triaxial Confining Loads
  40. Yang Yekai, Zhang Chiyu, Liu Zhongxian, Dong Liang et al. (2024-10)
    Effect of Hydration Process on the Inter-Layer Bond Tensile Mechanical Properties of Ultra-High-Performance Concrete for 3D Printing
  41. Yao Yiming, Zhang Jiawei, Sun Yuanfeng, Pi Yilin et al. (2024-08)
    Mechanical Properties and Failure Mechanism of 3D Printing Ultra-High-Performance Concrete
  42. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-01)
    Fresh and Anisotropic-Mechanical Properties of 3D Printable Ultra-High-Ductile Concrete with Crumb-Rubber
  43. Ye Junhong, Yang Minxin, Yu Jiangtao, Dai Yecheng et al. (2023-10)
    Size-Effect on Flexural and Fracture Behaviors of 3D Printed Engineered Cementitious Composites:
    Experimental and Numerical Studies
  44. Yu Kequan, McGee Wesley, Ng Tsz, Zhu He et al. (2021-02)
    3D Printable Engineered Cementitious Composites:
    Fresh and Hardened Properties
  45. Yuan Hanquan, Dong Enlai, Jia Zijian, Jia Lutao et al. (2025-03)
    The Influence of Pore Structure and Fiber Orientation on Anisotropic Mechanical Property of 3D Printed Ultra-High-Performance Concrete

3 Citations

  1. Deng North, Wang Sizhe, Li Mingyang, Wang Xiangyu et al. (2025-12)
    A Perforated Strip-Based Three-Dimensional Reinforcement Strategy for 3D Printed Concrete:
    Flexural Testing of Beams as a Proof of Concept
  2. Zhang Hui, Wu Jie, Huang Bo-Tao, Yu Rena et al. (2025-11)
    Cross-Scale Mechanisms of Anisotropy in 3D-Printed Ultra-High-Performance Concrete
  3. Chen Wenguang, Yu Jie, Ye Junhong, Yu Jiangtao et al. (2025-11)
    3D Printed High-Performance Fiber-Reinforced Cementitious Composites:
    Fresh, Mechanical, and Microstructural Properties

BibTeX
@article{yang_chen_lan_yang.2025.QEfFPo3PUHPCLiDD,
  author            = "Shutong Yang and Zhengyuan Chen and Tian Lan and Tiange Yang",
  title             = "Quantitative Evaluation for Fracture Properties of 3D Printed Ultra-High-Performance Concrete Loaded in Different Directions",
  doi               = "10.1016/j.cemconcomp.2025.106110",
  year              = "2025",
  journal           = "Cement and Concrete Composites",
  volume            = "162",
  pages             = "106110",
}
Formatted Citation

S. Yang, Z. Chen, T. Lan and T. Yang, “Quantitative Evaluation for Fracture Properties of 3D Printed Ultra-High-Performance Concrete Loaded in Different Directions”, Cement and Concrete Composites, vol. 162, p. 106110, 2025, doi: 10.1016/j.cemconcomp.2025.106110.

Yang, Shutong, Zhengyuan Chen, Tian Lan, and Tiange Yang. “Quantitative Evaluation for Fracture Properties of 3D Printed Ultra-High-Performance Concrete Loaded in Different Directions”. Cement and Concrete Composites 162 (2025): 106110. https://doi.org/10.1016/j.cemconcomp.2025.106110.