Effect of Processing on the Air-Void System of 3D Printed Concrete (2022-04)¶
10.1016/j.cemconres.2022.106789
Das Arnesh, Song Yu, , , ,
Journal Article - Cement and Concrete Research, Vol. 156
Abstract
The long-term performance of 3D printed concrete structures involves various durability issues, and in this study, we are focusing on frost damage. This can be a serious issue in cold places like Switzerland and may be particularly problematic for 3D printed structures owing to the likely presence of cold joints. 3D printing often involves processing steps such as pumping, set acceleration and extrusion, and in the present work, we consider the effect of these processing conditions on the air void system. It was found that pumping and extrusion processes significantly change the void structure while acceleration or higher setting rates can stabilize them, the latter ensuring a higher protection from frost damage. It was also seen that after extrusion, cast and printed samples have very comparable void systems and spatial distribution of voids, implying no clear impact of the presence of interfaces in the latter.
¶
15 References
- Anton Ana-Maria, Reiter Lex, Wangler Timothy, Frangez Valens et al. (2020-12)
A 3D Concrete Printing Prefabrication Platform for Bespoke Columns - Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
3D Printing Using Concrete-Extrusion:
A Roadmap for Research - Chen Yu, Çopuroğlu Oğuzhan, Rodríguez Claudia, Filho Fernando et al. (2021-02)
Characterization of Air-Void Systems in 3D Printed Cementitious Materials Using Optical Image Scanning and X-Ray Computed Tomography - Das Arnesh, Song Yu, Mantellato Sara, Wangler Timothy et al. (2020-07)
Influence of Pumping-Extrusion on the Air-Void System of 3D Printed Concrete - Feng Peng, Meng Xinmiao, Chen Jian-Fei, Ye Lieping (2015-06)
Mechanical Properties of Structures 3D Printed with Cementitious Powders - Khan Mohammad, Sanchez Florence, Zhou Hongyu (2020-04)
3D Printing of Concrete:
Beyond Horizons - Khoshnevis Behrokh (2003-11)
Automated Construction by Contour Crafting:
Related Robotics and Information Technologies - Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
Extrusion-Based Additive Manufacturing with Cement-Based Materials:
Production Steps, Processes, and Their Underlying Physics - Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction - Putten Jolien, Deprez Maxim, Cnudde Veerle, Schutter Geert et al. (2019-09)
Microstructural Characterization of 3D Printed Cementitious Materials - Reiter Lex, Wangler Timothy, Anton Ana-Maria, Flatt Robert (2020-05)
Setting-on-Demand for Digital Concrete:
Principles, Measurements, Chemistry, Validation - Reiter Lex, Wangler Timothy, Roussel Nicolas, Flatt Robert (2018-06)
The Role of Early-Age Structural Build-Up in Digital Fabrication with Concrete - Roussel Nicolas (2018-05)
Rheological Requirements for Printable Concretes - Wangler Timothy, Lloret-Fritschi Ena, Reiter Lex, Hack Norman et al. (2016-10)
Digital Concrete:
Opportunities and Challenges - Zhang Yu, Zhang Yunsheng, Yang Lin, Liu Guojian et al. (2021-02)
Hardened Properties and Durability of Large-Scale 3D Printed Cement-Based Materials
33 Citations
- Li Liqing, Shi Zhenkun, Wang Lei, Sui Yi et al. (2025-12)
3D Printing of Simulated Lunar Soil Geopolymer and Analysis of Its Weak Surface and Anisotropic Performance - Taborda-Llano Isabella, Hoyos-Montilla Ary, Asensio Eloy, Guerrero Ana et al. (2025-12)
Influence of the Construction Process Parameters on the Mechanical Performance and Durability of 3D Printed Concrete:
A Systematic Review - Liu Huawei, Tao Yaxin, Zhu Chao, Liu Chao et al. (2025-11)
3D Printed Concrete with Recycled Coarse Aggregate:
Freeze-Thaw Resistance Assessment and Damage Mechanisms - Zhang Hui, Wu Jie, Huang Bo-Tao, Yu Rena et al. (2025-11)
Cross-Scale Mechanisms of Anisotropy in 3D-Printed Ultra-High-Performance Concrete - Murtaza Ghulam, Baldinelli Giorgio (2025-08)
Revolutionizing Architecture:
3D Printing in Large Construction Industry and Strategic Innovations for Enhanced Performance - Disu Oluwatimilehin, Ismail Sikiru, Wood Luke, Chrysanthou Andreas et al. (2025-08)
Experimental Study on Buildability of 3D-Printed Cement-Based Structures Using Aluminium Sulphate - Pierre Maxime, Ghabezloo Siavash, Dangla Patrick, Mesnil Romain et al. (2025-06)
Multiphysics Modelling of 3D Concrete Printing:
From Material Model to Process Simulation and Optimisation - Tanyildizi Harun, Seloglu Maksut, Bakri Abdullah Mohd, Razak Rafiza et al. (2025-04)
The Rheological and Mechanical Properties of 3D-Printed Geopolymers:
A Review - Givkashi Mohammad, Moodi Faramarz, Ramezanianpour Amir (2025-02)
Effect of Air-Entraining Agent on Hardened Properties of 3D Printed Concrete with Emphasis on Permeability and Air Void Structure - Liu Chao, Liu Huawei, Wu Yiwen, Wu Jian et al. (2025-02)
Effect of X-Ray CT Characterized Pore Structure on the Freeze-Thaw Resistance of 3D Printed Concrete with Recycled Coarse Aggregate - Han Xiaoyu, Yan Jiachuan, Huo Yanlin, Chen Tiefeng (2024-11)
Effect of Carbonation-Curing-Regime on 3D Printed Concrete:
Compressive Strength, CO2 Uptake, and Characterization - Dong Enlai, Jia Zijian, Jia Lutao, Rao Suduan et al. (2024-10)
Modeling Fiber-Alignment in 3D Printed Ultra-High-Performance Concrete Based on Stereology-Theory - Chajec Adrian, Šavija Branko (2024-09)
The Effect of Using Surface Functionalized Granite-Powder-Waste on Fresh Properties of 3D Printed Cementitious Composites - Jarabo Rocío, Fuente González Elena, García Calvo José, Carballosa Pedro et al. (2024-08)
Nano-Crystalline-Cellulose to Reduce Superplasticizer-Demand in 3D Printing of Cementitious Materials - Ler Kee-Hong, Ma Chau-Khun, Chin Chee-Long, Ibrahim Izni et al. (2024-08)
Porosity and Durability Tests on 3D Printing Concrete:
A Review - Tittelboom Kim, Mohan Dhanesh, Šavija Branko, Keita Emmanuel et al. (2024-08)
On the Micro-and Meso-Structure and Durability of 3D Printed Concrete Elements - Givkashi Mohammad, Moodi Faramarz, Ramezanianpour Amir (2024-08)
Effect of Pumping Process on the Properties of 3D Printed Concrete Containing Air-Entraining-Agent - Wangler Timothy, Tao Yaxin, Das Arnesh, Mahmoudi Matineh et al. (2024-08)
Aluminate 2K Systems in Digital Concrete:
Process, Design, Chemistry, and Outlook - Yang Rijiao, Xu Chengji, Lan Yan, Qiu Yue et al. (2024-08)
Near Pixel-Level Characterisation of Micro-Fibers in 3D Printed Cementitious Composites and Migration Mechanisms Using a Novel Iterative Method - Givkashi Mohammad, Tohidloo Mohammad (2024-07)
The Effect of Freeze-Thaw-Cycles and Sulfuric-Acid-Attack Separately on the Compressive Strength and Microstructure of 3D Printed Air-Entrained Concrete - He Lewei, Chen Bingzhi, Liu Qimin, Chen Hao et al. (2024-07)
A Quasi-Exponential Distribution of Interfacial Voids and Its Effect on the Inter-Layer Strength of 3D Printed Concrete - Dulaj Albanela, Salet Theo, Lucas Sandra (2024-01)
A Study of the Effects of MWCNTs on the Fresh and Hardened State Properties of 3D Printable Concrete - Liu Xiongfei, Cai Huachong, Ma Guowei, Hou Guanyu (2024-01)
Spray-Based 3D Concrete Printing-Parameter Design-Model:
Actionable Insight for High Printing Quality - Dey Dhrutiman, Nguyen Vuong, Nguyen-Xuan Hung, Srinivas Dodda et al. (2023-12)
Flexural Performance of 3D Printed Concrete Structure with Lattice-Infills - Bos Derk, Wolfs Robert (2023-12)
A Quality-Control Framework for Digital Fabrication with Concrete - Liu Yi, Wang Li, Yuan Qiang, Peng Jianwei (2023-09)
Effect of Coarse Aggregate on Printability and Mechanical Properties of 3D Printed Concrete - Ghantous Rita, Evseeva Anastasiia, Dickey Brandon, Gupta Shashank et al. (2023-07)
Examining Effect of Printing-Directionality on Freezing-and-Thawing Response of Three-Dimensional-Printed Cement-Paste - Geng Songyuan, Luo Qiling, Liu Kun, Li Yunchao et al. (2023-02)
Research Status and Prospect of Machine Learning in Construction 3D Printing - Bai Gang, Wang Li, Wang Fang, Ma Guowei (2022-12)
Assessing Printing Synergism in a Dual 3D Printing System for Ultra-High-Performance Concrete In-Process Reinforced Cementitious Composite - Li Shuai, Nguyen-Xuan Hung, Tran Jonathan (2022-11)
Digital Design and Parametric Study of 3D Concrete Printing on Non-Planar Surfaces - Spuriņa Ella, Šinka Māris, Ziemelis Krists, Vanags Andris et al. (2022-09)
The Effects of Air-Entraining Agent on Fresh and Hardened Properties of 3D Concrete - Chen Yuning, Zhang Yamei, Xie Yudong, Zhang Zedi et al. (2022-09)
Unraveling Pore-Structure Alternations in 3D Printed Geopolymer Concrete and Corresponding Impacts on Macro-Properties - Das Arnesh, Aguilar Sanchez Asel, Wangler Timothy, Flatt Robert (2022-06)
Freeze-Thaw-Performance of 3D Printed Concrete:
Influence of Interfaces
BibTeX
@article{das_song_mant_wang.2022.EoPotAVSo3PC,
author = "Arnesh Das and Yu Song and Sara Mantellato and Timothy Paul Wangler and David A. Lange and Robert Johann Flatt",
title = "Effect of Processing on the Air-Void System of 3D Printed Concrete",
doi = "10.1016/j.cemconres.2022.106789",
year = "2022",
journal = "Cement and Concrete Research",
volume = "156",
}
Formatted Citation
A. Das, Y. Song, S. Mantellato, T. P. Wangler, D. A. Lange and R. J. Flatt, “Effect of Processing on the Air-Void System of 3D Printed Concrete”, Cement and Concrete Research, vol. 156, 2022, doi: 10.1016/j.cemconres.2022.106789.
Das, Arnesh, Yu Song, Sara Mantellato, Timothy Paul Wangler, David A. Lange, and Robert Johann Flatt. “Effect of Processing on the Air-Void System of 3D Printed Concrete”. Cement and Concrete Research 156 (2022). https://doi.org/10.1016/j.cemconres.2022.106789.