Inclined 3D Concrete Printing (2023-05)¶
, Ye Kehan, , ,
Journal Article - Additive Manufacturing
Abstract
To enhance the adaptability of 3D concrete printing (3DCP) to freeform and topologically optimized prefabricated structures, it is of great necessity to develop inclined 3D printing for overhang structures. In this study, the prediction criteria for stable buildability of additive stacking was established to facilitate the inclined 3D printing. The optimization of the working performance of 3D printed concrete materials is a prerequisite for achieving rapid construction. Therefore, the approach of compounding retarder and accelerator was simultaneously adopted to the hybrid cementitious material to optimize the extrudability and early-age stiffness, and furtherly improve the coordination of ultra-early age performance to the additive printing process of overhang structures. The development of green strength of concrete materials are quantitatively analyzed. The optimum replacement rate of HB-CSA to OPC is determined as 15%, and the setting time can be controlled within 35–96 min. Finally, the effectiveness of the developed evaluation method is verified by both the numerical analysis and experimental investigation, the deviation of the proposed constructability evaluation criterion can be controlled within 9.0%.
¶
33 References
- Ahmed Zeeshan, Wolfs Robert, Bos Freek, Salet Theo (2021-11)
A Framework for Large-Scale Structural Applications of 3D Printed Concrete:
The Case of a 29m Bridge in the Netherlands - Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
3D Printing Using Concrete-Extrusion:
A Roadmap for Research - Gaudillière-Jami Nadja, Duballet Romain, Bouyssou Charles, Mallet Alban et al. (2018-09)
Large-Scale Additive Manufacturing of Ultra-High-Performance Concrete of Integrated Formwork for Truss-Shaped Pillars - Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
Large-Scale 3D Printing of Ultra-High-Performance Concrete:
A New Processing Route for Architects and Builders - Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
A Review of 3D Printed Concrete:
Performance-Requirements, Testing Measurements and Mix-Design - Ivanova Irina, Ivaniuk Egor, Bisetti Sameercharan, Nerella Venkatesh et al. (2022-03)
Comparison Between Methods for Indirect Assessment of Buildability in Fresh 3D Printed Mortar and Concrete - Kruger Jacques, Cho Seung, Zeranka Stephan, Vintila Cristian et al. (2019-12)
3D Concrete Printer Parameter Optimization for High-Rate Digital Construction Avoiding Plastic Collapse - Kruger Jacques, Mostert Jean-Pierre, Zijl Gideon (2022-06)
A Strain-Based Constitutive Model Ensuring Aesthetic 3D Printed Concrete Structures:
Limiting Differential Settlement of Filaments - Li Zhijian, Wang Li, Ma Guowei (2018-05)
Method for the Enhancement of Buildability and Bending-Resistance of 3D Printable Tailing Mortar - Liu Haoran, Ding Tao, Xiao Jianzhuang, Mechtcherine Viktor (2022-04)
Buildability Prediction of 3D Printed Concrete at Early-Ages:
A Numerical Study with Drucker-Prager-Model - Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-09)
3D Printing Concrete with Recycled Coarse Aggregates:
The Influence of Pore-Structure on Inter-Layer Adhesion - Ma Guowei, Buswell Richard, Silva Wilson, Wang Li et al. (2022-03)
Technology Readiness:
A Global Snapshot of 3D Concrete Printing and the Frontiers for Development - Ma Guowei, Li Zhijian, Wang Li (2017-12)
Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing - Mai (née Dressler) Inka, Freund Niklas, Lowke Dirk (2020-01)
The Effect of Accelerator Dosage on Fresh Concrete Properties and on Inter-Layer Strength in Shotcrete 3D Printing - Malaeb Zeina, Sakka Fatima, Hamzeh Farook (2019-02)
3D Concrete Printing:
Machine Design, Mix Proportioning, and Mix Comparison Between Different Machine Setups - Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
Extrusion-Based Concrete 3D Printing from a Material Perspective:
A State of the Art Review - Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2020-09)
Effect of Microwave-Heating on Inter-Layer Bonding and Buildability of Geopolymer 3D Concrete Printing - Nguyen Vuong, Li Shuai, Liu Junli, Nguyen Kien et al. (2022-11)
Modelling of 3D Concrete Printing Process:
A Perspective on Material and Structural Simulations - Panda Biranchi, Lim Jian, Tan Ming (2019-02)
Mechanical Properties and Deformation Behavior of Early-Age Concrete in the Context of Digital Construction - Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques - Reiter Lex, Wangler Timothy, Roussel Nicolas, Flatt Robert (2018-06)
The Role of Early-Age Structural Build-Up in Digital Fabrication with Concrete - Roussel Nicolas (2018-05)
Rheological Requirements for Printable Concretes - Shahzad Qamar, Wang Xujiang, Wang Wenlong, Wan Yi et al. (2020-06)
Coordinated Adjustment and Optimization of Setting-Time, Flowability, and Mechanical Strength for Construction 3D Printing Material Derived from Solid Waste - Shakor Pshtiwan, Sanjayan Jay, Nazari Ali, Nejadi Shami (2017-02)
Modified 3D Printed Powder to Cement-Based Material and Mechanical Properties of Cement Scaffold Used in 3D Printing - Suiker Akke (2018-01)
Mechanical Performance of Wall Structures in 3D Printing Processes:
Theory, Design Tools and Experiments - Vantyghem Gieljan, Ooms Ticho, Corte Wouter (2020-11)
VoxelPrint:
A Grasshopper Plug-In for Voxel-Based Numerical Simulation of Concrete Printing - Wang Li, Lin Wenyu, Ma Hui, Li Dexin et al. (2022-09)
Mechanical and Microstructural Properties of 3D Printed Aluminate-Cement-Based Composite Exposed to Elevated Temperatures - Wang Li, Liu Yi, Yang Yu, Li Yanfeng et al. (2021-04)
Bonding Performance of 3D Printing Concrete with Self-Locking Interfaces Exposed to Compression-Shear and Compression-Splitting Stresses - Wang Li, Ma Hui, Li Zhijian, Ma Guowei et al. (2021-07)
Cementitious Composites Blending with High Belite-Sulfoaluminate and Medium-Heat Portland Cements for Large-Scale 3D Printing - Wang Li, Tian Zehao, Ma Guowei, Zhang Mo (2020-02)
Inter-Layer Bonding Improvement of 3D Printed Concrete with Polymer-Modified Mortar:
Experiments and Molecular Dynamics Studies - Wolfs Robert, Bos Freek, Salet Theo (2018-02)
Early-Age Mechanical Behaviour of 3D Printed Concrete:
Numerical Modelling and Experimental Testing - Wolfs Robert, Suiker Akke (2019-06)
Structural Failure During Extrusion-Based 3D Printing Processes - Wu Yiwen, Liu Chao, Liu Huawei, Zhang Zhenzi et al. (2021-07)
Study on the Rheology and Buildability of 3D Printed Concrete with Recycled Coarse Aggregates
22 Citations
- Nguyen Trang, Park Jaejun, Kim Dong-Hyun (2025-11)
Impacts of Infill Patterns and Curve Types in 3D Printed Clay Walls - Chen Baixi, Yang Lei, Jiang Sheng (2025-09)
Stochastic Analysis of 3D Concrete Printing Process with Curvature and Inclination by Explainable Data-Driven Modelling - Lian Hongqian, Ding Tao (2025-09)
Deformation of Inclined Concrete 3D Printing:
A Computational Fluid Dynamics Analysis - Geng Shao-bo, Zhang Chen, Zhang Hui, Hai Lu et al. (2025-08)
Upcycling Coal Gangue Coarse Aggregates into 3D Printed Concrete:
Multi-Scale Mechanisms of Fracture Behaviour - Garcés Gonzalo, García-Alvarado Rodrigo, Bunster Victor, Muñoz-Sanguinetti Claudia (2025-06)
Additive Construction 4.0:
A Systematic Review of 3D Concrete Printing for Construction 4.0 - Zuo Zibo, Huang Yulin, Tao Yaxin, Yong Yuan et al. (2025-06)
Analysis of Factors Influencing the Maximum Continuous Printing Height of 3D Printed Concrete - Lin Wenyu, Wang Li, Li Zhijian, Bai Gang et al. (2025-06)
Multi-Scale Fabrication and Challenges in 3D Printing of Special -Shaped Concrete Structures - Jiang Yu, Zhang Qingxin, Tabbaa Abir, Daly Ronan (2025-03)
The Critical Role of Time-Dependent Rheology for Improved Quality Control of 3D Printed Cementitious Structures - Li Yeou-Fong, Liang Yu-Fang, Syu Jin-Yuan, Huang Chi-Hong et al. (2024-12)
Static and Dynamic Mechanical Characteristics of 3D Printed Anisotropic Basalt Fiber-Reinforced Cement Mortar - Zhang Yu, Yu Zhengxing, Zhang Yunsheng, Zhang Jiufu et al. (2024-12)
Study on the Predictive Model for Continuous Build-Height of 3D Printed Concrete Based on Printability and Early Mechanical Properties - Habibi Alireza, Buswell Richard, Osmani Mohamed, Aziminezhad Mohamadmahdi (2024-11)
Sustainability Principles in 3D Concrete Printing:
Analysing Trends, Classifying Strategies, and Future Directions - Wang Li, Lin Wenyu, Wan Qian, Li Zhijian et al. (2024-11)
Manufacturing Accuracy Improvement of Concrete Product by Hybrid Additive-Subtractive Method Based on the Time-Dependent Characteristics of Cementitious Materials - Lucas Sandra (2024-11)
From 3D to 5D Printing:
Additive Manufacturing of Functional Construction Materials - Seo Eun-A, Lee Hojae (2024-10)
Influence of Chemical Admixtures on Buildability and Deformation of Concrete for Additive Manufacturing - Chen Baixi, Qian Xiaoping (2024-09)
Data-Driven Reliability-Oriented Buildability-Analysis of 3D Concrete Printed Curved Wall - Shivendra Bandoorvaragerahalli, Sharath Chandra Sathvik, Singh Atul, Kumar Rakesh et al. (2024-09)
A Path Towards SDGs:
Investigation of the Challenges in Adopting 3D Concrete Printing in India - Kamhawi Abdallah, Meibodi Mania (2024-09)
Techniques and Strategies in Extrusion-Based 3D Concrete Printing of Complex Components to Prevent Premature Failure - Capêto Ana, Jesus Manuel, Uribe Braian, Guimarães Ana et al. (2024-05)
Building a Greener Future:
Advancing Concrete Production Sustainability and the Thermal Properties of 3D Printed Mortars - Wei Ying, Han Song, Yu Shiwei, Chen Ziwei et al. (2024-05)
Parameter Impact on 3D Concrete Printing from Single to Multi-Layer Stacking - Li Yu, Wu Hao, Xie Xinjie, Zhang Liming et al. (2024-02)
FloatArch:
A Cable-Supported, Unreinforced, and Re-Assemblable 3D Printed Concrete Structure Designed Using Multi-Material Topology-Optimization - Rehman Atta, Kim Ik-Gyeom, Kim Jung-Hoon (2024-01)
Towards Full Automation in 3D Concrete Printing Construction:
Development of an Automated and In-Line Test-Method for In-Situ Assessment of Structural Build-Up and Quality of Concrete - Hu Hailong, Huang Jian, Wang Tiezhu, Manuka Mesfin et al. (2023-09)
Impact of Calcium Sulfoaluminate Cement on Printability and Early Strength Development of a Slag-Based 3D Printing Cementitious Material
BibTeX
@article{wang_ye_wan_li.2023.I3CP,
author = "Li Wang and Kehan Ye and Qian Wan and Zhijian Li and Guowei Ma",
title = "Inclined 3D Concrete Printing: Build-Up Prediction and Early-Age Performance-Optimization",
doi = "10.1016/j.addma.2023.103595",
year = "2023",
journal = "Additive Manufacturing",
}
Formatted Citation
L. Wang, K. Ye, Q. Wan, Z. Li and G. Ma, “Inclined 3D Concrete Printing: Build-Up Prediction and Early-Age Performance-Optimization”, Additive Manufacturing, 2023, doi: 10.1016/j.addma.2023.103595.
Wang, Li, Kehan Ye, Qian Wan, Zhijian Li, and Guowei Ma. “Inclined 3D Concrete Printing: Build-Up Prediction and Early-Age Performance-Optimization”. Additive Manufacturing, 2023. https://doi.org/10.1016/j.addma.2023.103595.