Skip to content

Fresh and Hardened Properties of 3D High-Strength Printing Concrete and Its Recent Applications (2020-03)

10.1007/s40996-020-00370-4

Özalp Fatih, Yılmaz Halit
Journal Article - Iranian Journal of Science and Technology, Transactions of Civil Engineering, Vol. 44, Iss. S1, pp. 319-330

Abstract

3D printer is the device that quickly produces the models designed on the computer using different materials without the need for a mould. In this study, the properties of the 3D printer developed by Iston and the complementary components such as concrete pump, concrete transmission hose, printer nozzle head which are synchronized with this printer are given. In addition, the mix design of fibre-reinforced and grain size limited high-performance concrete, which is used in this printer, and properties of fresh and hardened concrete are examined. In this context, mechanical properties of casted and printed specimens were compared. In addition, mechanical behaviour of printed samples in different directions was also investigated. Results of both compression and flexural tests show the mechanical properties of the printed specimens differed slightly in directions. When the casted and printed samples are compared, the strength of the casted samples is slightly higher than the printed samples. Although the mechanical properties of the casted and printed samples differed, targeted results were obtained for the strength of the printed samples. In the last part of the study, examples of street furniture produced in 3D printer using white cement mixture for decorative purposes are given. Although there are studies in the literature about 3D concrete printing, there are not any studies on street furniture produced in 3D printer.

21 References

  1. Asprone Domenico, Auricchio Ferdinando, Menna Costantino, Mercuri Valentina (2018-03)
    3D Printing of Reinforced Concrete Elements:
    Technology and Design Approach
  2. Bos Freek, Bosco Emanuela, Salet Theo (2018-11)
    Ductility of 3D Printed Concrete Reinforced with Short Straight Steel-Fibers
  3. Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
    Additive Manufacturing of Concrete in Construction:
    Potentials and Challenges of 3D Concrete Printing
  4. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  5. Khoshnevis Behrokh (2003-11)
    Automated Construction by Contour Crafting:
    Related Robotics and Information Technologies
  6. Khoshnevis Behrokh, Dutton Rosanne (1998-01)
    Innovative Rapid Prototyping Process Makes Large-Sized, Smooth-Surfaced Complex Shapes in a Wide Variety of Materials
  7. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  8. Lu Bing, Weng Yiwei, Li Mingyang, Qian Ye et al. (2019-02)
    A Systematical Review of 3D Printable Cementitious Materials
  9. Nair Sooraj, Alghamdi Hussam, Arora Aashay, Mehdipour Iman et al. (2019-01)
    Linking Fresh Paste Microstructure, Rheology and Extrusion-Characteristics of Cementitious Binders for 3D Printing
  10. Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
    Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material
  11. Panda Biranchi, Tan Ming (2018-03)
    Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing
  12. Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
    Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing
  13. Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
    Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques
  14. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  15. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  16. Suiker Akke (2018-01)
    Mechanical Performance of Wall Structures in 3D Printing Processes:
    Theory, Design Tools and Experiments
  17. Tay Yi, Panda Biranchi, Paul Suvash, Mohamed Nisar et al. (2017-05)
    3D Printing Trends in Building and Construction Industry:
    A Review
  18. Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
    Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model
  19. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  20. Wolfs Robert, Suiker Akke (2019-06)
    Structural Failure During Extrusion-Based 3D Printing Processes
  21. Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
    Fresh Properties of a Novel 3D Printing Concrete Ink

37 Citations

  1. Liu Xingzi, Buswell Richard, Cavalaro Sergio, Xu Jie et al. (2026-01)
    Influence of Inter-Filament Voids on the Failure Mechanism and Compressive Strength of 3D Printed Concrete
  2. Tushar Fazlul, Hasan Mehedi, Hasan Kamrul, Mawa Jannatul et al. (2026-01)
    Factors Affecting Flowability and Rheological Behavior of 3D Printed Concrete:
    A Comprehensive Review
  3. Gil-Lopez Tomas, Amirfiroozkoohi Alireza, Valiente López María, Verdu-Vazquez Maria (2026-01)
    The Impact of 3D Printing on Mortar Strength and Flexibility:
    A Comparative Analysis of Conventional and Additive Manufacturing Techniques
  4. Mohammed Salhah, Aljewifi Hana, Jldain Hafeth (2025-12)
    Evaluating Compressive Strength in 3D-Printed Concrete Structures:
    A Comparative Study of ANSYS Simulations and Experimental Data
  5. Teixeira João, Jesus Manuel, Ribeiro Elis, Rangel Bárbara et al. (2025-12)
    Large Format Additive Manufacturing with Cement and Clay Applications
  6. Garshasbi Sajad, Mousavi Seyed, Dehestani Mehdi, Nazarpour Hadi (2025-10)
    Sustainable Production of 3D Concrete Printing Using Agricultural Waste Fibers
  7. Liu Ruiying, Xiong Zhongming, Chen Xuan, Jia Qiong et al. (2025-09)
    Industrial Waste in 3D Printed Concrete:
    A Mechanistic Review on Rheological Control and Printability
  8. Li Nan, Deng Yongjie, Li Weihong, Li Lingyu et al. (2025-08)
    Performance of Active-Magnesia-Based Magnesium Phosphate Cement and Application of Rapid-Solidification 3D Printing Technology
  9. Gerges Isabelle, Farraj Faten, Youssef Nicolas, Antczak Emmanuel et al. (2025-07)
    Methodologies to Design Optimum 3D Printable Mortar Mix:
    A Review
  10. Sakhare Vishakha, Khairnar Neha, Dahatonde Ulka, Mashalkar Shilpa (2025-06)
    Review on Sustainability in 3D Concrete Printing:
    Focus on Waste Utilization and Life Cycle Assessment
  11. Els Heinrich, Zijl Gideon, Villiers Wibke (2025-06)
    A Review of Shrinkage and Restrained Shrinkage Cracking in 3D Concrete Printing
  12. Gulati Hemant, Lu Tianxing (2025-03)
    Customized 3D Printable Concrete:
    A Systematic Review of Challenges, Methodologies, and Adoption Strategies
  13. Akhrif Iatimad, Oulkhir Fatima, Jai Mostapha, Rihani Nadir et al. (2025-03)
    Earth-Based Materials 3D Printing, Extrudability and Buildability Numerical Investigations
  14. Licciardello Lucia, Soto Alejandro, Kaufmann Walter, Metelli Giovanni (2025-01)
    Determining the Strength of 3D Printed Concrete with the Modified Slant-Shear-Test
  15. Murali Gunasekaran, Leong Sing (2024-11)
    Waste-Driven Construction:
    A State of the Art Review on the Integration of Waste in 3D Printed Concrete in Recent Researches for Sustainable Development
  16. Wagner Juliana, Silveira Marcos, Vanderlei Romel, Das Sreekanta (2024-10)
    Comparative Analysis of Mold-Cast and 3D Printed Cement-Based Components:
    Implications for Standardization in Additive Construction
  17. Cai Jianguo, Wang Jingsong, Zhang Qian, Du Caixia et al. (2024-10)
    State of the Art of Mechanical Properties of 3D Printed Concrete
  18. Shahib Al Bari M., Ekaputri Januarti (2024-09)
    The Effect of Fiber on the Green Strength and Buildability of High-Strength 3D Printing Concrete
  19. Ler Kee-Hong, Ma Chau-Khun, Chin Chee-Long, Ibrahim Izni et al. (2024-08)
    Porosity and Durability Tests on 3D Printing Concrete:
    A Review
  20. Zhang Kaijian, Lin Wenqiang, Zhang Qingtian, Wang Dehui et al. (2024-07)
    Evaluation of Anisotropy and Statistical Parameters of Compressive Strength for 3D Printed Concrete
  21. Oulkhir Fatima, Akhrif Iatimad, Jai Mostapha (2024-05)
    3D Concrete Printing Success:
    An Exhaustive Diagnosis and Failure-Modes-Analysis
  22. Huang Tao, Peng Zhongqi, Wang Mengge, Feng Shuang (2024-04)
    Study on the Ionic Transport Properties of 3D Printed Concrete
  23. İlcan Hüseyin, Özkılıç Hamza, Tuğluca Merve, Şahmaran Mustafa (2024-02)
    Inter-Layer Mechanical Performance of 3D Printed Cementitious Systems:
    A Comprehensive Study on Operational and Material Parameters
  24. Gamage Kumari, Fawzia Sabrina, Zahra Tatheer, Teixeira Muge et al. (2024-02)
    Advancement in Sustainable 3D Concrete Printing:
    A Review on Materials, Challenges, and Current Progress in Australia
  25. Fasihi Ali, Libre Nicolas (2024-01)
    From Pumping to Deposition:
    A Comprehensive Review of Test-Methods for Characterizing Concrete-Printability
  26. Ingle Vaibhav, Kaliyavaradhan Senthil, Ambily Parukutty, Shekar Deepadharshan (2023-09)
    3D Printable Concrete Without Chemical Admixtures:
    Fresh and Hardened Properties
  27. Riaz Raja, Usman Muhammad, Ali Ammar, Majid Usama et al. (2023-06)
    Inclusive Characterization of 3D Printed Concrete in Additive Manufacturing:
    A Detailed Review
  28. Şahin Hatice, Mardani Ali (2023-02)
    Mechanical Properties, Durability Performance and Inter-Layer Adhesion of 3DPC Mixtures:
    A State‐of‐the‐art Review
  29. Giridhar Greeshma, Prem Prabhat, Kumar Shankar (2023-01)
    Development of Concrete Mixes for 3D Printing Using Simple Tools and Techniques
  30. Teixeira João, Schaefer Cecília, Rangel Bárbara, Maia Lino et al. (2022-11)
    A Road Map to Find in 3D Printing a New Design Plasticity for Construction:
    The State of Art
  31. Kaliyavaradhan Senthil, Ambily Parukutty, Prem Prabhat, Ghodke Swapnil (2022-08)
    Test-Methods for 3D Printable Concrete
  32. Samad Nur, Abdullah Siti, Ibrahim Mustaffa, Shahidan Shahiron et al. (2022-05)
    Initial Properties of 3D Printing Concrete Using Rice-Husk-Ash as Partial Cement Replacement
  33. Uhlík Adam, Buch Mário, Unčík Stanislav (2022-04)
    Effecting the Rheological Properties of Composites for 3D Printing Technology in Construction
  34. Guamán-Rivera Robert, Martínez-Rocamora Alejandro, García-Alvarado Rodrigo, Muñoz-Sanguinetti Claudia et al. (2022-02)
    Recent Developments and Challenges of 3D Printed Construction:
    A Review of Research Fronts
  35. Tarhan Yeşim, Şahin Remzi (2021-05)
    Fresh and Rheological Performances of Air-Entrained 3D Printable Mortars
  36. Teixeira João, Schaefer Cecília, Rangel Bárbara, Alves Jorge et al. (2021-03)
    Development of 3D Printing Sustainable Mortars Based on a Bibliometric Analysis
  37. Kruger Jacques, Zijl Gideon (2020-10)
    A Compendious Review on Lack-of-Fusion in Digital Concrete Fabrication

BibTeX
@article{ozal_ylm.2020.FaHPo3HSPCaIRA,
  author            = "Fatih Özalp and Halit Dilşad Yılmaz",
  title             = "Fresh and Hardened Properties of 3D High-Strength Printing Concrete and Its Recent Applications",
  doi               = "10.1007/s40996-020-00370-4",
  year              = "2020",
  journal           = "Iranian Journal of Science and Technology, Transactions of Civil Engineering",
  volume            = "44",
  number            = "S1",
  pages             = "319--330",
}
Formatted Citation

F. Özalp and H. D. Yılmaz, “Fresh and Hardened Properties of 3D High-Strength Printing Concrete and Its Recent Applications”, Iranian Journal of Science and Technology, Transactions of Civil Engineering, vol. 44, no. S1, pp. 319–330, 2020, doi: 10.1007/s40996-020-00370-4.

Özalp, Fatih, and Halit Dilşad Yılmaz. “Fresh and Hardened Properties of 3D High-Strength Printing Concrete and Its Recent Applications”. Iranian Journal of Science and Technology, Transactions of Civil Engineering 44, no. S1 (2020): 319–30. https://doi.org/10.1007/s40996-020-00370-4.