Skip to content

3D Printable Strain-Hardening Cementitious Composites (3DP-SHCC) (2023-08)

Tailoring Fresh and Hardened State Properties

10.1016/j.conbuildmat.2023.132924

 van Overmeir Anne,  Šavija Branko,  Bos Freek,  Schlangen Erik
Journal Article - Construction and Building Materials, Vol. 403

Abstract

With the introduction of 3D concrete printing, research started on how to include reinforcement in 3D printed structures. Initial studies on the implementation of strain hardening cementitious composites (SHCC) as selfreinforcing printable mortars have shown promising results. The development of this new type of SHCC comes with additional challenges. Where SHCC by itself is already a complex material engineered to achieve specific micromechanical behaviour under tensile loading, its application in 3D printing techniques imposes even more requirements - the so-called ‘printability’ requirements. The question that rises for the development of this new material is how to achieve printability without losing strain hardening capacity. This paper investigates the influence of raw materials and additives, such as silica fume, limestone powder, viscosity modifying agents and water, on the fresh and hardened mechanical properties of printable SHCC, by improving on a previously developed mixture. The fresh material mixtures were subjected to slump flow tests to analyse their applicability for 3D printing. In hardened state, the mixtures were tested on their compressive strength and flexural strength to assess their potential for strain hardening capacity. Finally, two mixtures were selected for printing. The mixtures were assessed on print quality and buildability by the deployment of a buildability test. Furthermore, the printed elements were mechanically tested at 28 days, on compressive strength, flexural strength and uniaxial tensile strength and strain. It was concluded that the silica fume content and water to solid ratio are relevant variables for 3DP-SHCC optimization. The study has yielded two 3DP-SHCC mix designs that display significant strain hardening capacity and good printability properties.

34 References

  1. Asprone Domenico, Menna Costantino, Bos Freek, Salet Theo et al. (2018-06)
    Rethinking Reinforcement for Digital Fabrication with Concrete
  2. Bhattacherjee Shantanu, Jain Smrati, Santhanam Manu (2023-03)
    Developing 3D Printable and Buildable Limestone-Calcined-Clay-Based Cement Composites with Higher Aggregate Content
  3. Bos Freek, Kruger Jacques, Lucas Sandra, Zijl Gideon (2021-04)
    Juxtaposing Fresh Material-Characterisation-Methods for Buildability-Assessment of 3D Printable Cementitious Mortars
  4. Bos Freek, Menna Costantino, Pradena Mauricio, Kreiger Eric et al. (2022-03)
    The Realities of Additively Manufactured Concrete Structures in Practice
  5. Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
    Additive Manufacturing of Concrete in Construction:
    Potentials and Challenges of 3D Concrete Printing
  6. Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
    3D Printing Using Concrete-Extrusion:
    A Roadmap for Research
  7. Buswell Richard, Xu Jie, Becker Daniel, Dobrzanski James et al. (2022-04)
    Geometric Quality Assurance for 3D Concrete Printing and Hybrid Construction Manufacturing Using a Standardised Test Part for Benchmarking Capability
  8. Cho Seung, Kruger Jacques, Bester Frederick, Heever Marchant et al. (2020-07)
    A Compendious Rheo-Mechanical Test for Printability-Assessment of 3D Printable Concrete
  9. Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2019-03)
    An Approach to Develop Printable Strain-Hardening Cementitious Composites
  10. Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2020-05)
    Mechanical Behavior of Printed Strain-Hardening Cementitious Composites
  11. Geng Zifan, She Wei, Zuo Wenqiang, Lyu Kai et al. (2020-09)
    Layer-Interface Properties in 3D Printed Concrete:
    Dual Hierarchical Structure and Micromechanical Characterization
  12. Hass Lauri, Bos Freek, Salet Theo (2022-09)
    Characterizing the Bond Properties of Automatically Placed Helical Reinforcement in 3D Printed Concrete
  13. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    3D Concrete Printing:
    A Lower-Bound Analytical Model for Buildability-Performance-Quantification
  14. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  15. Li Victor, Bos Freek, Yu Kequan, McGee Wesley et al. (2020-04)
    On the Emergence of 3D Printable Engineered, Strain-Hardening Cementitious Composites
  16. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  17. Liu Chao, Wang Xianggang, Chen Yuning, Zhang Chao et al. (2021-06)
    Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete
  18. Marchon Delphine, Kawashima Shiho, Bessaies-Bey Hela, Mantellato Sara et al. (2018-05)
    Hydration- and Rheology-Control of Concrete for Digital Fabrication:
    Potential Admixtures and Cement-Chemistry
  19. Mechtcherine Viktor, Tittelboom Kim, Kazemian Ali, Kreiger Eric et al. (2022-04)
    A Roadmap for Quality-Control of Hardening and Hardened Printed Concrete
  20. Ogura Hiroki, Nerella Venkatesh, Mechtcherine Viktor (2018-08)
    Developing and Testing of Strain-Hardening Cement-Based Composites (SHCC) in the Context of 3D Printing
  21. Overmeir Anne, Figueiredo Stefan, Šavija Branko, Bos Freek et al. (2022-02)
    Design and Analyses of Printable Strain-Hardening Cementitious Composites with Optimized Particle-Size-Distribution
  22. Panda Biranchi, Lim Jian, Tan Ming (2019-02)
    Mechanical Properties and Deformation Behavior of Early-Age Concrete in the Context of Digital Construction
  23. Pott Ursula, Wolf Christoph, Petryna Yuri, Stephan Dietmar (2022-09)
    Evaluation of the Unconfined Uniaxial Compression-Test to Study the Evolution of Apparent Printable Mortar-Properties During the Early-Age Transition-Regime
  24. Salet Theo, Ahmed Zeeshan, Bos Freek, Laagland Hans (2018-05)
    Design of a 3D Printed Concrete Bridge by Testing
  25. Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
    Vision of 3D Printing with Concrete:
    Technical, Economic and Environmental Potentials
  26. Soltan Daniel, Li Victor (2018-03)
    A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing
  27. Suiker Akke (2018-01)
    Mechanical Performance of Wall Structures in 3D Printing Processes:
    Theory, Design Tools and Experiments
  28. Wangler Timothy, Lloret-Fritschi Ena, Reiter Lex, Hack Norman et al. (2016-10)
    Digital Concrete:
    Opportunities and Challenges
  29. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  30. Wolfs Robert, Suiker Akke (2019-06)
    Structural Failure During Extrusion-Based 3D Printing Processes
  31. Yu Kequan, McGee Wesley, Ng Tsz, Zhu He et al. (2021-02)
    3D Printable Engineered Cementitious Composites:
    Fresh and Hardened Properties
  32. Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
    Mix-Design Concepts for 3D Printable Concrete:
    A Review
  33. Zhang Hongping, Wang Jianhong, Liu Yaling, Zhang Xiaoshuang et al. (2021-11)
    Effect of Processing Parameters on the Printing Quality of 3D Printed Composite Cement-Based Materials
  34. Zhou Wen, Zhang Yamei, Ma Lei, Li Victor (2022-04)
    Influence of Printing Parameters on 3D Printing Engineered Cementitious Composites

21 Citations

  1. Abbas Yassir, Alsaif Abdulaziz (2025-11)
    Explainable Data-Driven Modeling for Optimized Mix Design of 3D-Printed Concrete:
    Interpreting Nonlinear Synergies Among Binder Components and Proportions
  2. Tulliani Jean-Marc (2025-11)
    Latest Developments in 3D-Printed Engineered Cementitious Composites:
    Technologies, Prospects, and Challenges
  3. Zhu Binrong, Liu Xuhua, Wei Yang, Pan Jinlong (2025-11)
    Predicting the Tensile Performance of 3D-Printed PE Fiber-Reinforced ECC Based on Micromechanics Model
  4. Chen Wenguang, Yu Jie, Ye Junhong, Yu Jiangtao et al. (2025-11)
    3D Printed High-Performance Fiber-Reinforced Cementitious Composites:
    Fresh, Mechanical, and Microstructural Properties
  5. Chen Wenguang, Liang Long, Ye Junhong, Liu Lingfei et al. (2025-09)
    Machine Learning-Enabled Performance-Based Design of Three-Dimensional Printed Engineered Cementitious Composites
  6. Li Shiping, Sun Yan, Qian Ye, Chen Wujun et al. (2025-08)
    Bio-Inspired Bouligand Architectures for Enhanced Flexural Performance in 3D-Printed Strain-Hardening Cementitious Composites (3DP-SHCC)
  7. Ingle Vaibhav, Prem Prabhat (2025-07)
    Acoustic Emission Examination of 3D Printed Ultra-High Performance Concrete with and Without Coarse Aggregate Under Fresh and Hardened States
  8. Gerges Isabelle, Farraj Faten, Youssef Nicolas, Antczak Emmanuel et al. (2025-07)
    Methodologies to Design Optimum 3D Printable Mortar Mix:
    A Review
  9. Anop Darya, Sadenova Marzhan, Beisekenov Nail, Rudenko Olga et al. (2025-07)
    Additive Manufacturing as an Alternative to Core Sampling in Concrete Strength Assessment
  10. Sakhare Vishakha, Khairnar Neha, Dahatonde Ulka, Mashalkar Shilpa (2025-06)
    Review on Sustainability in 3D Concrete Printing:
    Focus on Waste Utilization and Life Cycle Assessment
  11. Sun Yan, Du Guoqiang, Deng Xiaowei, Qian Ye (2025-06)
    Effects of Nozzle Thickness on the Mechanical Properties of 3D Printable Ultra-High Performance Strain-Hardening Cementitious Composites (UHP-SHCC)
  12. Zhu Binrong, Zhang Yuhang, Ye Huzi, Wei Yang et al. (2025-03)
    Low-Velocity Impact Performance of Biomimetic 3D Printed Engineered Cementitious Composites Beams
  13. Hass Lauri, Bos Freek, Salet Theo (2024-12)
    Bond Governed Interactions Between Helical Reinforcement and 3D Printed Concrete
  14. Warsi Syed, Panda Biranchi, Biswas Pankaj (2024-11)
    Development of Ultra-Ductile Strain-Hardening 3D Printed Concrete Composite Utilizing Critical Fiber Volume and Coarse Aggregate
  15. Ding Yao, Ou Xingjian, Qi Hongtuo, Xiong Gang et al. (2024-10)
    Inter-Layer Bonding Performance of 3D Printed Engineered Cementitious Composites:
    Rheological Regulation and Fiber Hybridization
  16. Du Guoqiang, Sun Yan, Qian Ye (2024-10)
    Nature-Inspired Approach for Enhancing the Fracture Performance of 3D Printed Strain-Hardening Cementitious Composites (3DP-SHCC)
  17. Singh Pranay, Gadde Venkateswara, Zhou Chi, Okumus Pinar et al. (2024-09)
    Development of 3D Printable Strain-Hardening Cementitious Composites for Bridge-Related Applications
  18. Du Guoqiang, Qian Ye (2024-05)
    Effects of Printing-Patterns and Loading-Directions on Fracture Behavior of 3D Printed Strain-Hardening Cementitious Composites
  19. Wan Zhi, Xu Yading, He Shan, Schlangen Erik et al. (2024-01)
    The Use of Additive Manufacturing in Self-Healing Cementitious Materials:
    A State of the Art Review
  20. Hass Lauri, Nefs Karsten, Bos Freek, Salet Theo (2023-10)
    Application Potential of Combining Strain-Hardening Cementitious Composites and Helical Reinforcement for 3D Concrete Printed Structures:
    Case Study of a Spiral Staircase
  21. Overmeir Anne, Šavija Branko, Bos Freek, Schlangen Erik (2023-09)
    Effects of 3D Concrete Printing Phases on the Mechanical Performance of Printable Strain-Hardening Cementitious Composites

BibTeX
@article{over_savi_bos_schl.2023.3PSHCC3S,
  author            = "Anne Linde van Overmeir and Branko Šavija and Freek Paul Bos and Erik Schlangen",
  title             = "3D Printable Strain-Hardening Cementitious Composites (3DP-SHCC): Tailoring Fresh and Hardened State Properties",
  doi               = "10.1016/j.conbuildmat.2023.132924",
  year              = "2023",
  journal           = "Construction and Building Materials",
  volume            = "403",
}
Formatted Citation

A. L. van Overmeir, B. Šavija, F. P. Bos and E. Schlangen, “3D Printable Strain-Hardening Cementitious Composites (3DP-SHCC): Tailoring Fresh and Hardened State Properties”, Construction and Building Materials, vol. 403, 2023, doi: 10.1016/j.conbuildmat.2023.132924.

Overmeir, Anne Linde van, Branko Šavija, Freek Paul Bos, and Erik Schlangen. “3D Printable Strain-Hardening Cementitious Composites (3DP-SHCC): Tailoring Fresh and Hardened State Properties”. Construction and Building Materials 403 (2023). https://doi.org/10.1016/j.conbuildmat.2023.132924.