Skip to content

Advancing Mix-Design Prediction in 3D Printed Concrete (2024-07)

Predicting Anisotropic Compressive Strength and Slump-Flow

10.1016/j.cscm.2024.e03510

 Malik Umair,  Riaz Raja,  Rehman Saif,  Usman Muhammad, Riaz Raja, Hamaz Raja
Journal Article - Case Studies in Construction Materials, No. e03510

Abstract

Introducing 3D-concrete printing has started a revolution in the construction industry, presenting unique opportunities alongside undeniable challenges. Among these, the major challenge is the iterative process associated with mix design formulation, which results in significant material and time consumption. This research uses machine learning (ML) techniques such as Extreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), Decision Tree Regression (DTR), Gaussian Process Regression (GPR), and Artificial Neural Network (ANN) to overcome these challenges. A dataset containing 21 mix constituent features and 4 output properties (cast and printed compressive strength, and slump flow) was extracted from the literature to investigate the relationship between mix design and performance. The models were assessed using a range of evaluation metrics, including Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and R-squared value. Gaussian Process Regression (GPR) yielded more favorable results. In the case of cast strength, GPR achieved an R2 value of 0.9069, along with RMSE, MSE, and MAE values of 13.04, 170.12, and 9.40, respectively. A similar trend was observed for printed strengths in directions 1, 2, and 3. GPR achieved R-squared values exceeding 0.91 for all directions, accompanied by significantly lower RMSE values (below 4.1). The machine learning models were also validated using four unique mix designs. These mixes were 3D printed and tested for compressive strength and slump flow. GPR's average error was 10.55%, while SVM achieved a slightly lower average error of 9.38%. Overall, this work presents a novel approach for optimizing 3D-printed concrete by enabling the prediction of slump flow and compressive strength directly from the mix design. This approach can facilitate the design and fabrication of 3D-printed concrete structures that fulfill the necessary strength and printability requirements.

40 References

  1. Ali Ammar, Riaz Raja, Malik Umair, Abbas Syed et al. (2023-06)
    Machine-Learning-Based Predictive-Model for Tensile and Flexural Strength of 3D Printed Concrete
  2. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
    Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing
  3. Bazli Milad, Ashrafi Hamed, Rajabipour Ali, Kutay Cat (2023-02)
    3D Printing for Remote Housing:
    Benefits and Challenges
  4. Chen Mingxu, Yang Lei, Zheng Yan, Huang Yongbo et al. (2020-04)
    Yield-Stress and Thixotropy-Control of 3D Printed Calcium-Sulfoaluminate Cement Composites with Metakaolin Related to Structural Build-Up
  5. Chung Jihoon, Lee Ghang, Kim Jung-Hoon (2021-04)
    Framework for Technical Specifications of 3D Concrete Printers
  6. Craveiro Flávio, Duarte José, Bártolo Helena, Bartolo Paulo (2019-04)
    Additive Manufacturing as an Enabling Technology for Digital Construction:
    A Perspective on Construction 4.0
  7. Ding Tao, Xiao Jianzhuang, Zou Shuai, Zhou Xinji (2020-08)
    Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers
  8. Heever Marchant, Bester Frederick, Kruger Jacques, Zijl Gideon (2021-07)
    Mechanical Characterisation for Numerical Simulation of Extrusion-Based 3D Concrete Printing
  9. Izadgoshasb Hamed, Kandiri Amirreza, Shakor Pshtiwan, Laghi Vittoria et al. (2021-11)
    Predicting Compressive Strength of 3D Printed Mortar in Structural Members Using Machine Learning
  10. Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2020-01)
    Yield-Stress-Criteria to Assess the Buildability of 3D Concrete Printing
  11. Jeong Hoseong, Han Sun-Jin, Choi Seung-Ho, Lee Yoon et al. (2019-02)
    Rheological Property Criteria for Buildable 3D Printing Concrete
  12. Jiang Quan, Liu Qiang, Wu Si, Zheng Hong et al. (2022-06)
    Modification Effect of Nano-Silica and Polypropylene-Fiber for Extrusion-Based 3D Printing Concrete:
    Printability and Mechanical Anisotropy
  13. Liu Zhixin, Li Mingyang, Weng Yiwei, Qian Ye et al. (2020-03)
    Modelling- and Parameter-Optimization for Filament-Deformation in 3D Cementitious Material-Printing Using Support-Vector-Machine
  14. Marchment Taylor, Sanjayan Jay (2018-09)
    Method of Enhancing Inter-Layer Bond Strength in 3D Concrete Printing
  15. Mechtcherine Viktor, Nerella Venkatesh, Will Frank, Näther Mathias et al. (2019-08)
    Large-Scale Digital Concrete Construction:
    CONPrint3D Concept for On-Site, Monolithic 3D Printing
  16. Muthukrishnan Shravan, Ramakrishnan Sayanthan, Sanjayan Jay (2021-06)
    Technologies for Improving Buildability in 3D Concrete Printing
  17. Nerella Venkatesh, Näther Mathias, Iqbal Arsalan, Butler Marko et al. (2018-09)
    In-Line Quantification of Extrudability of Cementitious Materials for Digital Construction
  18. Panda Biranchi, Tay Yi, Paul Suvash, Tan Ming (2018-05)
    Current Challenges and Future Potential of 3D Concrete Printing
  19. Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
    Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction
  20. Puzatova (nee Sharanova) Anastasiia, Shakor Pshtiwan, Laghi Vittoria, Dmitrieva Maria (2022-11)
    Large-Scale 3D Printing for Construction Application by Means of Robotic Arm and Gantry 3D Printer:
    A Review
  21. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
    3D Printable Concrete:
    Mixture-Design and Test-Methods
  22. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2019-08)
    Mechanical Characterization of 3D Printable Concrete
  23. Riaz Raja, Usman Muhammad, Ali Ammar, Majid Usama et al. (2023-06)
    Inclusive Characterization of 3D Printed Concrete in Additive Manufacturing:
    A Detailed Review
  24. Sayegh Sameh, Romdhane Lotfi, Manjikian Solair (2022-03)
    A Critical Review of 3D Printing in Construction:
    Benefits, Challenges, and Risks
  25. Secrieru Egor, Fataei Shirin, Schröfl Christof, Mechtcherine Viktor (2017-04)
    Study on Concrete Pumpability Combining Different Laboratory Tools and Linkage to Rheology
  26. Sun Junbo, Aslani Farhad, Lu Jenny, Wang Lining et al. (2021-06)
    Fiber-Reinforced Lightweight Engineered Cementitious Composites for 3D Concrete Printing
  27. Suntharalingam Thadshajini, Nagaratnam Brabha, Poologanathan Keerthan, Hackney Phil et al. (2020-07)
    Effect of Polypropylene-Fibers on the Mechanical Properties of Extrudable Cementitious Material
  28. Tay Yi, Li Mingyang, Tan Ming (2019-04)
    Effect of Printing Parameters in 3D Concrete Printing:
    Printing Region and Support Structures
  29. Tay Yi, Qian Ye, Tan Ming (2019-05)
    Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test
  30. Uddin Md, Mahamoudou Faharidine, Deng Boyu, Elobaid Musa Moneef et al. (2023-03)
    Prediction of Rheological Parameters of 3D Printed Polypropylene-Fiber-Reinforced Concrete by Machine Learning
  31. Uddin Md, Ye Junhong, Deng Boyu, Li Lingzhi et al. (2023-04)
    Interpretable Machine Learning for Predicting the Strength of 3D Printed Fiber-Reinforced Concrete
  32. Wang Xianggang, Jia Lutao, Jia Zijian, Zhang Chao et al. (2022-06)
    Optimization of 3D Printing Concrete with Coarse Aggregate via Proper Mix-Design and Printing-Process
  33. Xia Ming, Nematollahi Behzad, Sanjayan Jay (2019-02)
    Development of Powder-Based 3D Concrete Printing Using Geopolymers
  34. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
    Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete
  35. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-01)
    Fresh and Anisotropic-Mechanical Properties of 3D Printable Ultra-High-Ductile Concrete with Crumb-Rubber
  36. Yu Kequan, McGee Wesley, Ng Tsz, Zhu He et al. (2021-02)
    3D Printable Engineered Cementitious Composites:
    Fresh and Hardened Properties
  37. Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
    Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete
  38. Zhao Yu, Yang Guang, Zhu Lingli, Ding Yahong et al. (2022-10)
    Effects of Rheological Properties and Printing Speed on Molding Accuracy of 3D Printing Basalt-Fiber Cementitious Materials
  39. Zhu Ronghua, Egbe King-James, Salehi Hadi, Shi Zhongtian et al. (2024-01)
    Eco-Friendly 3D Printed Concrete with Fine Aggregate Replacements:
    Fabrication, Characterization and Machine Learning Prediction
  40. Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
    Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction

8 Citations

  1. Iqbal Imtiaz, Kasim Tala, Besklubova Svetlana, Inqiad Waleed et al. (2025-12)
    Exploring Knowledge Domains and Future Research Directions in 3D Printed Concrete:
    A Bibliometric and Systematic Review
  2. Iqbal Imtiaz, Kasim Tala, Besklubova Svetlana, Mustafa Ali et al. (2025-12)
    Passive Determination of Anisotropic Compressive Strength of 3D Printed Concrete Using Multiple Neural Networks Enhanced with Explainable Machine Learning (XML)
  3. Abbas Yassir, Alsaif Abdulaziz (2025-11)
    Explainable Data-Driven Modeling for Optimized Mix Design of 3D-Printed Concrete:
    Interpreting Nonlinear Synergies Among Binder Components and Proportions
  4. Kiyani Muhammad, Hussain Syed, Emaan Rajja, Kamal Muhammad et al. (2025-08)
    Influence of Process Parameters on 3D Concrete Printing:
    A Step Towards Standardized Approaches
  5. Hiremath Shivashankarayya, Mathapati Gururaj, Chiniwar Dundesh, Vishwanatha H. (2025-05)
    Performance Evaluation of Cementitious Composites by Designing an Extrusion System for Construction 3D Printing
  6. Sapata Alise, Šinka Māris, Šahmenko Genādijs, Korat Bensa Lidija et al. (2025-02)
    Establishing Benchmark Properties for 3D-Printed Concrete:
    A Study of Printability, Strength, and Durability
  7. Park Keunhyoung, Memari Ali, Hojati Maryam, Radlińska Aleksandra et al. (2024-10)
    Effects of Anisotropic Mechanical Behavior on Nominal Moment Capability of 3D Printed Concrete Beam with Reinforcement
  8. Rehman Saif, Riaz Raja, Usman Muhammad, Kim In-Ho (2024-08)
    Augmented Data-Driven Approach Towards 3D Printed Concrete Mix Prediction

BibTeX
@article{mali_riaz_rehm_usma.2024.AMDPi3PC,
  author            = "Umair Jalil Malik and Raja Dilawar Riaz and Saif Ur Rehman and Muhammad Usman and Raja Ehsan Riaz and Raja Hamaz",
  title             = "Advancing Mix-Design Prediction in 3D Printed Concrete: Predicting Anisotropic Compressive Strength and Slump-Flow",
  doi               = "10.1016/j.cscm.2024.e03510",
  year              = "2024",
  journal           = "Case Studies in Construction Materials",
  pages             = "e03510",
}
Formatted Citation

U. J. Malik, R. D. Riaz, S. U. Rehman, M. Usman, R. E. Riaz and R. Hamaz, “Advancing Mix-Design Prediction in 3D Printed Concrete: Predicting Anisotropic Compressive Strength and Slump-Flow”, Case Studies in Construction Materials, p. e03510, 2024, doi: 10.1016/j.cscm.2024.e03510.

Malik, Umair Jalil, Raja Dilawar Riaz, Saif Ur Rehman, Muhammad Usman, Raja Ehsan Riaz, and Raja Hamaz. “Advancing Mix-Design Prediction in 3D Printed Concrete: Predicting Anisotropic Compressive Strength and Slump-Flow”. Case Studies in Construction Materials, 2024, e03510. https://doi.org/10.1016/j.cscm.2024.e03510.