Chloride-Induced Corrosion and Carbonation in 3D Printed Concrete (2021-12)¶
10.3390/infrastructures7010001
de'm Malan Jean, ,
Journal Article - Infrastructures, Vol. 7, Iss. 1
Abstract
The durability of reinforced concrete structures is dependent on the ability of the concrete cover to combat the ingress of chlorides and carbon dioxide in marine and urban environments. In recent years, interest in additive manufacturing, specifically referring to extrusion based three-dimensional concrete printing (3DCP), has been growing in the construction industry. Despite this being a promising technology that can save construction time, costs and resources, certain issues regarding the lack of fusion between subsequent printed layers have been brought to light. Research has shown that the lack of fusion at the interlayer regions can act as ingress pathways for corrosion contaminants, such as carbon dioxide and chloride aqueous solution, that can cause deterioration. This study investigates the interlayer bond strength (flexural strength) and durability performance of 3D printed concrete subjected to pass times between 0 and 30 min and compares the results to reference cast concrete of the same concrete mixture. The durability study includes Durability Index testing (oxygen permeability, water sorptivity and chloride conductivity index), accelerated concrete carbonation and chloride-induced corrosion. The results show that the cast samples outperform printed samples, yielding greater flexural strength and durability properties, and emphasize the importance of improving the 3DCP interfacial bond. Cast samples are shown to have randomly distributed, compact voids compared to the interconnected and elongated pores located at the interlayer regions of printed samples. In addition, printed samples yield lower interlayer bond strength and durability properties with an increase in pass time, which is attributed to surface moisture evaporation as well as the thixotropic behaviour of the concrete mixture. Good relationships between the mechanical strength and durability performance are also presented
¶
11 References
- Cho Seung, Kruger Jacques, Bester Frederick, Heever Marchant et al. (2020-07)
A Compendious Rheo-Mechanical Test for Printability-Assessment of 3D Printable Concrete - Kruger Jacques, Plessis Anton, Zijl Gideon (2020-12)
An Investigation into the Porosity of Extrusion-Based 3D Printed Concrete - Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
3D Concrete Printing:
A Lower-Bound Analytical Model for Buildability-Performance-Quantification - Kruger Jacques, Zijl Gideon (2020-10)
A Compendious Review on Lack-of-Fusion in Digital Concrete Fabrication - Mohan Manu, Rahul Attupurathu, Schutter Geert, Tittelboom Kim (2020-10)
Extrusion-Based Concrete 3D Printing from a Material Perspective:
A State of the Art Review - Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing - Putten Jolien, Azima M., Heede Philip, Mullem T. et al. (2020-06)
Neutron-Radiography to Study the Water-Ingress via the Inter-Layer of 3D Printed Cementitious Materials for Continuous Layering - Putten Jolien, Deprez Maxim, Cnudde Veerle, Schutter Geert et al. (2019-09)
Microstructural Characterization of 3D Printed Cementitious Materials - Putten Jolien, Volder Melissa, Heede Philip, Schutter Geert et al. (2020-07)
3D Printing of Concrete:
The Influence on Chloride Penetration - Stefanoni Matteo, Angst Ueli, Elsener Bernhard (2018-09)
Corrosion Challenges and Opportunities in Digital Fabrication of Reinforced Concrete - Wang Li, Ma Hui, Li Zhijian, Ma Guowei et al. (2021-07)
Cementitious Composites Blending with High Belite-Sulfoaluminate and Medium-Heat Portland Cements for Large-Scale 3D Printing
38 Citations
- Tushar Fazlul, Hasan Mehedi, Hasan Kamrul, Mawa Jannatul et al. (2026-01)
Factors Affecting Flowability and Rheological Behavior of 3D Printed Concrete:
A Comprehensive Review - Reis Rui, Aroso Francisca, Brandão Filipe, Camões Aires et al. (2026-01)
A Systematic Review on the Durability of 3D-Printed Cementitious Materials:
Insights and Research Challenges - Taborda-Llano Isabella, Hoyos-Montilla Ary, Asensio Eloy, Guerrero Ana et al. (2025-12)
Influence of the Construction Process Parameters on the Mechanical Performance and Durability of 3D Printed Concrete:
A Systematic Review - Liu Xinhao, Hu Jiajun, Xiong Guiyan, Cundy Andrew et al. (2025-12)
Long-Term Durability and Degradation Mechanisms of 3D Printed Geopolymers (3DPG) With/Without Healing Agents in Marine Environments - Givkashi Mohammad (2025-11)
Durability of 3D Printed Concrete Containing Air-Entraining Agent:
Evaluating the Importance of Carbonation Resistance - Mostert Jean-Pierre, Kruger Jacques (2025-10)
Numerically Optimised Filament Surface Topology Towards Maximum Bond Strength in 3D Printed Concrete - Zhang Yi, Lima Lucas, Böhler David, Arunothayan Arun et al. (2025-10)
Durability Assessment of 3D Printed Cement-Based Materials:
A RILEM TC 304-ADC Interlaboratory Study - Dong Liang, Wu Chengqing, Liu Zhongxian, Wu Pengtao et al. (2025-07)
Chloride Transport Anisotropy and Interfacial Degradation in 3D-Printed Ultra-High-Performance Concrete:
Multi-Scale Evaluation and Engineering Implications - Goel Devansh, Kore Sudarshan (2025-07)
Mapping the Bibliometric Progression of 3D Concrete Printing:
A Concise Review - Kaur Zinnia, Goyal Shweta, Kwatra Naveen, Bera Tarun (2025-07)
Pore Structure Analysis and Durability Performance of Sustainable 3D Printed Concrete Incorporating Fly Ash and Limestone Calcined Clay Based Binders - Els Heinrich, Zijl Gideon, Villiers Wibke (2025-06)
A Review of Shrinkage and Restrained Shrinkage Cracking in 3D Concrete Printing - Mishra Jyotirmoy, Babafemi Adewumi, Combrinck Riaan (2025-04)
Limitations and Research Priorities in 3D-Printed Geopolymer Concrete:
A Perspective Contribution - Li Mo, Wu Yun-Chen, Wang Xinbo (2025-04)
Fracture Behavior of Additively Manufactured Cementitious Materials - Hlobil Michal, Michel Luca, Pundir Mohit, Kammer David (2025-03)
A Thermo-Hygro Model to Determine the Factors Dictating Cold Joint Formation in 3D Printed Concrete - Ducoulombier Nicolas, Bono Victor, Kachkouch Fatima, Jacquet Yohan et al. (2025-01)
From Laboratory to Practice - Lima Lucas, Wangler Timothy, Sanchez Asel, Anton Ana-Maria et al. (2024-09)
Durability of 3D Printed Concrete:
Performance-Assessment of a Two-Component System Against Water Absorption, Carbonation, and Chloride-Ingress - Mostert Jean-Pierre, Kruger Jacques (2024-09)
Improving Durability Performance of 3D Printed Concrete via Topological Interlocking of Layers - Zhang Yi, Tittelboom Kim, Tao Yaxin, Zhang Yiyuan et al. (2024-09)
Understanding Carbonation in 3D Printed Cement-Based Materials with Exposed Bottom Surface - Ler Kee-Hong, Ma Chau-Khun, Chin Chee-Long, Ibrahim Izni et al. (2024-08)
Porosity and Durability Tests on 3D Printing Concrete:
A Review - Tittelboom Kim, Mohan Dhanesh, Šavija Branko, Keita Emmanuel et al. (2024-08)
On the Micro-and Meso-Structure and Durability of 3D Printed Concrete Elements - Baktheer Abedulgader, Claßen Martin (2024-07)
A Review of Recent Trends and Challenges in Numerical Modeling of the Anisotropic Behavior of Hardened 3D Printed Concrete - Birru Bizu, Rehman Atta, Kim Jung-Hoon (2024-06)
Comparative Analysis of Structural Build-Up in One-Component Stiff and Two-Component Shotcrete-Accelerated Set-on-Demand Mixtures for 3D Concrete Printing - Huang Tao, Peng Zhongqi, Wang Mengge, Feng Shuang (2024-04)
Study on the Ionic Transport Properties of 3D Printed Concrete - Zaid Osama, Ouni Mohamed (2024-04)
Advancements in 3D Printing of Cementitious Materials:
A Review of Mineral Additives, Properties, and Systematic Developments - Jaji Mustapha, Zijl Gideon, Babafemi Adewumi (2024-03)
Durability and Pore-Structure of Metakaolin-Based 3D Printed Geopolymer Concrete - Wu Yun-Chen, Wang Xinbo, Li Mo (2024-03)
Role of Thixotropy in Inter-Layer Microstructure and Properties of Additively Manufactured Cementitious Materials - Colyn Markus, Zijl Gideon, Babafemi Adewumi (2024-02)
Fresh and Strength Properties of 3D Printable Concrete Mixtures Utilising a High Volume of Sustainable Alternative Binders - Rui Aoyu, Wang Li, Lin Wenyu, Ma Guowei (2023-10)
Experimental Study on Damage Anisotropy of 3D Printed Concrete Exposed to Sulfate-Attack - Jaji Mustapha, Kamoru A., Zijl Gideon, Babafemi Adewumi (2023-07)
Effect of Anisotropy on Permeability Index and Water-Absorption of 3D Printed Metakaolin-Based Geopolymer Concrete - Nikravan Ata, Aydoğan Olcay, Dittel Gözdem, Scheurer Martin et al. (2023-06)
Implementation of Continuous Textile-Fibers in 3D Printable Cementitious Composite - Zhao Yasong, Gao Yangyunzhi, Chen Gaofeng, Li Shujun et al. (2023-04)
Development of Low-Carbon Materials from GGBS and Clay-Brick-Powder for 3D Concrete Printing - Ibrahim Kamoru, Zijl Gideon, Babafemi Adewumi (2023-03)
Influence of Limestone-Calcined-Clay-Cement on Properties of 3D Printed Concrete for Sustainable Construction - Şahin Hatice, Mardani Ali (2023-02)
Mechanical Properties, Durability Performance and Inter-Layer Adhesion of 3DPC Mixtures:
A State‐of‐the‐art Review - Chen Yuning, Zhang Yamei, Xie Yudong, Zhang Zedi et al. (2022-09)
Unraveling Pore-Structure Alternations in 3D Printed Geopolymer Concrete and Corresponding Impacts on Macro-Properties - Cicione Antonio, Kruger Jacques, Mostert Jean-Pierre, Walls Richard et al. (2022-09)
The Effect of Wind on 3D Printed Concrete Inter-Layer Bond Strength Based on Machine Learning Algorithms - Kaliyavaradhan Senthil, Ambily Parukutty, Prem Prabhat, Ghodke Swapnil (2022-08)
Test-Methods for 3D Printable Concrete - Nodehi Mehrab, Aguayo Federico, Nodehi Shahab, Gholampour Aliakbar et al. (2022-07)
Durability Properties of 3D Printed Concrete - Han Nv, Xiao Jianzhuang, Zhang Lihai, Peng Yu (2022-06)
A Micro-Scale-Based Numerical Model for Investigating Hygro-Thermo-Mechanical Behavior of 3D Printed Concrete at Elevated Temperatures
BibTeX
@article{mala_rooy_zijl.2022.CICaCi3PC,
author = "Jean de'M Malan and Algurnon Steve van Rooyen and Gideon Pieter Adriaan Greeff van Zijl",
title = "Chloride-Induced Corrosion and Carbonation in 3D Printed Concrete",
doi = "10.3390/infrastructures7010001",
year = "2022",
journal = "Infrastructures",
volume = "7",
number = "1",
}
Formatted Citation
J. de'M Malan, A. S. van Rooyen and G. P. A. G. van Zijl, “Chloride-Induced Corrosion and Carbonation in 3D Printed Concrete”, Infrastructures, vol. 7, no. 1, 2022, doi: 10.3390/infrastructures7010001.
Malan, Jean de'M, Algurnon Steve van Rooyen, and Gideon Pieter Adriaan Greeff van Zijl. “Chloride-Induced Corrosion and Carbonation in 3D Printed Concrete”. Infrastructures 7, no. 1 (2022). https://doi.org/10.3390/infrastructures7010001.