Skip to content

Rheology-Control and Shrinkage-Mitigation of 3D Printed Geopolymer Concrete Using Nano-Cellulose and Magnesium-Oxide (2024-04)

10.1016/j.conbuildmat.2024.136421

 Chen Yuxuan, Zhang Longfei, Wei Kai, Gao Huaxing, Liu Zhenyao, She Yuanshan, Chen Feixiang, Gao Hongbo,  Yu Qingliang
Journal Article - Construction and Building Materials, Vol. 429, No. 136421

Abstract

3D printing concrete (3DPC) is an emerging technology that produces concrete using digital method and has revolutionized the traditional labor-intensive construction mode. However, the free formwork printing and layerby-layer production of 3DPC induce severe shrinkage and plastic cracking during the early ages, especially for the geopolymer based materials. This research utilizes the nano-fibrillated cellulose (NFC) with the combination of magnesium oxides expansive agent (MEA) to mitigate the plastic and drying shrinkage of 3D printing geopolymer concrete (3DPGC), while optimizing its rheological behavior. The results show that after modification with proper dosages of NFC and MEA, 3DPGC showed reduced plastic and drying shrinkage at early ages, with improved printability, buildability, and mechanical strength. The underlying role of NFC and MEA on the performance of 3DPGC was thoroughly analyzed with rheometry, calorimetry, scanning electron microscopy, and internal humidity test. The water retention ability of nanocellulose can provide more moisture at early ages, thus mitigating cracking, while MEA can compromise the drying shrinkage at later ages. The contribution of the study shed light on the application of nanocellulose and MgO to increase the volume stability and mechanical performance of 3D printing geopolymer concrete.

27 References

  1. Bai Gang, Wang Li, Ma Guowei, Sanjayan Jay et al. (2021-03)
    3D Printing Eco-Friendly Concrete Containing Under-Utilised and Waste Solids as Aggregates
  2. Federowicz Karol, Kaszyńska Maria, Zieliński Adam, Hoffmann Marcin (2020-06)
    Effect of Curing Methods on Shrinkage Development in 3D Printed Concrete
  3. Gao Huaxing, Chen Yuxuan, Chen Qian, Yu Qingliang (2023-11)
    Thermal and Mechanical Performance of 3D Printing Functionally Graded Concrete:
    The Role of SAC on the Rheology and Phase Evolution of 3DPC
  4. Ghourchian Sadegh, Butler Marko, Krüger Markus, Mechtcherine Viktor (2021-04)
    Modelling the Development of Capillary Pressure in Freshly 3D Printed Concrete Elements
  5. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  6. Liu Xiongfei, Li Qi, Li Jixiang (2022-04)
    Shrinkage and Mechanical Properties Optimization of Spray-Based 3D Printed Concrete by PVA-Fiber
  7. Liu Chao, Wang Xianggang, Chen Yuning, Zhang Chao et al. (2021-06)
    Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete
  8. Long Wujian, Tao Jie-Lin, Lin Can, Gu Yucun et al. (2019-08)
    Rheology and Buildability of Sustainable Cement-Based Composites Containing Micro-Crystalline Cellulose for 3D Printing
  9. Lv Xuesen, Qin Yao, Liang Hang, Cui Xuemin (2021-07)
    Effects of Modifying-Agent on Rheology and Workability of Alkali-Activated Slag-Paste for 3D Extrusion-Forming
  10. Ma Lei, Zhang Qing, Jia Zijian, Liu Chao et al. (2021-11)
    Effect of Drying Environment on Mechanical Properties, Internal RH and Pore-Structure of 3D Printed Concrete
  11. Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2020-08)
    Plastic Shrinkage Cracking in 3D Printed Concrete
  12. Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2021-09)
    Modelling the Inter-Layer Bond Strength of 3D Printed Concrete with Surface Moisture
  13. Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2022-04)
    A Plastic Shrinkage Cracking-Risk-Model for 3D Printed Concrete Exposed to Different Environments
  14. Noaimat Yazeed, Ghaffar Seyed, Chougan Mehdi, Kheetan Mazen (2022-12)
    A Review of 3D Printing Low-Carbon Concrete with One-Part Geopolymer:
    Engineering, Environmental and Economic Feasibility
  15. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2020-01)
    Investigation of the Properties of Alkali-Activated Slag Mixes Involving the Use of Nano-Clay and Nucleation-Seeds for 3D Printing
  16. Putten Jolien, Snoeck Didier, Coensel R., Schutter Geert et al. (2020-12)
    Early-Age Shrinkage Phenomena of 3D Printed Cementitious Materials with Superabsorbent Polymers
  17. Qaidi Shaker, Yahia Ammar, Tayeh B., Unis H. et al. (2022-10)
    3D Printed Geopolymer Composites:
    A Review
  18. Rahul Attupurathu, Mohan Manu, Schutter Geert, Tittelboom Kim (2021-10)
    3D Printable Concrete with Natural and Recycled Coarse Aggregates:
    Rheological, Mechanical and Shrinkage Behavior
  19. Salman Nazar, Ma Guowei, Ijaz Nauman, Wang Li (2021-04)
    Importance and Potential of Cellulosic Materials and Derivatives in Extrusion-Based 3D Concrete Printing:
    Prospects and Challenges
  20. Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
    Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete
  21. Shahmirzadi Mohsen, Gholampour Aliakbar, Kashani Alireza, Ngo Tuan (2021-09)
    Shrinkage Behavior of Cementitious 3D Printing Materials:
    Effect of Temperature and Relative Humidity
  22. Tran Mien, Cu Yen, Le Chau (2021-10)
    Rheology and Shrinkage of Concrete Using Polypropylene-Fiber for 3D Concrete Printing
  23. Yao Hao, Xie Zonglin, Li Zemin, Huang Chuhan et al. (2021-11)
    The Relationship Between the Rheological Behavior and Inter-Layer Bonding Properties of 3D Printing Cementitious Materials with the Addition of Attapulgite
  24. Yuan Qiang, Xie Zonglin, Yao Hao, Huang Tingjie et al. (2022-06)
    Effect of Polyacrylamide on the Workability and Inter-Layer Interface Properties of 3D Printed Cementitious Materials
  25. Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
    Mix-Design Concepts for 3D Printable Concrete:
    A Review
  26. Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
    Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete
  27. Zhong Hui, Zhang Mingzhong (2022-02)
    3D Printing Geopolymers:
    A Review

17 Citations

  1. Zhang Chao, Zhang Junyi, Su Yilin, Zhang Yuying et al. (2026-01)
    Low-Carbon 3D-Printed Concrete by Using Biochar as a Carbon Sequestrator
  2. Murali Gunasekaran, Kravchenko Ekaterina, Yuvaraj Divya, Avudaiappan Siva (2025-12)
    Next-Generation Green Construction:
    3D-Printed Geopolymer Concrete with Optimized Rheology, Mechanical Performance, and Environmental Efficiency
  3. Basith Mydeen Pitchai Mohamed Abdul (2025-12)
    Polymer-Enhanced Composites for 3D Concrete Printing:
    A Review of Materials, Processes, and Performance
  4. Taborda-Llano Isabella, Hoyos-Montilla Ary, Asensio Eloy, Guerrero Ana et al. (2025-12)
    Influence of the Construction Process Parameters on the Mechanical Performance and Durability of 3D Printed Concrete:
    A Systematic Review
  5. Iqbal Imtiaz, Inqiad Waleed, Kasim Tala, Besklubova Svetlana et al. (2025-12)
    Strength Characterisation of Fly Ash Blended 3D Printed Concrete Enhanced with Explainable Machine Learning
  6. Luo Xiaoyu, Zhao Yuqi, Yang Min, Yao Xiaofei et al. (2025-12)
    Introducing Cement Composite Agents During Printing Process to Enhance the 3D-Printed Concrete Interfaces Between Layers and Filaments
  7. Türk Ayşe, Türk Furkan, Edebali Serpil, Keskin Ülkü (2025-11)
    3D Printable Mortars with Green Materials:
    Sustainable Solutions with Nanocellulose
  8. Geng Shao-bo, Zhang Chen, Zhang Hui, Hai Lu et al. (2025-08)
    Upcycling Coal Gangue Coarse Aggregates into 3D Printed Concrete:
    Multi-Scale Mechanisms of Fracture Behaviour
  9. Jaji Mustapha, Babafemi Adewumi, Zijl Gideon (2025-05)
    Mechanical Performance of Extrusion-Based Two-Part 3D-Printed Geopolymer Concrete:
    A Review of Advances in Laboratory and Real-Scale Construction Projects
  10. Mishra Jyotirmoy, Babafemi Adewumi, Combrinck Riaan (2025-04)
    Limitations and Research Priorities in 3D-Printed Geopolymer Concrete:
    A Perspective Contribution
  11. Cho Eunsan, Gwon Seongwoo, Cha Soowon, Shin Myoungsu (2025-04)
    Impact of Accelerator on Rheological Properties of Cement Composites with Cellulose Microfibers:
    3D Printing Perspective
  12. Aman Abdulkerim, Yang Zhe, Xin Yubo, Zhang Xiaoman et al. (2025-04)
    Introducing Magnesium Oxide into 3D Printed Concrete to Mitigate Dry-Shrinkage
  13. Abedi Mohammadmadhi, Waris Muhammad, Alawi Mubarak, Jabri Khalifa et al. (2024-12)
    From Local Earth to Modern Structures:
    A Critical Review of 3D Printed Cement Composites for Sustainable and Efficient Construction
  14. Tarhan Yeşim, Tarhan İsmail, Şahin Remzi (2024-12)
    Comprehensive Review of Binder Matrices in 3D Printing Construction:
    Rheological Perspectives
  15. Jin Peng, Hasany Masoud, Kohestanian Mohammad, Mehrali Mehdi (2024-10)
    Micro/Nano Additives in 3D Printing Concrete:
    Opportunities, Challenges, and Potential Outlook in Construction Applications
  16. Tanyildizi Harun, Seloglu Maksut, Coskun Ahmet (2024-08)
    The Effect of Nano-Zinc-Oxide on Freeze-Thaw-Resistance of 3D Printed Geopolymer Mortars
  17. Kilic Ugur, Soliman Nancy, Omran Ahmed, Ozbulut Osman (2024-06)
    Effects of Cellulose Nanofibrils on Rheological and Mechanical Properties of 3D Printable Cement Composites

BibTeX
@article{chen_zhan_wei_gao.2024.RCaSMo3PGCUNCaMO,
  author            = "Yuxuan Chen and Longfei Zhang and Kai Wei and Huaxing Gao and Zhenyao Liu and Yuanshan She and Feixiang Chen and Hongbo Gao and Qingliang Yu",
  title             = "Rheology-Control and Shrinkage-Mitigation of 3D Printed Geopolymer Concrete Using Nano-Cellulose and Magnesium-Oxide",
  doi               = "10.1016/j.conbuildmat.2024.136421",
  year              = "2024",
  journal           = "Construction and Building Materials",
  volume            = "429",
  pages             = "136421",
}
Formatted Citation

Y. Chen, “Rheology-Control and Shrinkage-Mitigation of 3D Printed Geopolymer Concrete Using Nano-Cellulose and Magnesium-Oxide”, Construction and Building Materials, vol. 429, p. 136421, 2024, doi: 10.1016/j.conbuildmat.2024.136421.

Chen, Yuxuan, Longfei Zhang, Kai Wei, Huaxing Gao, Zhenyao Liu, Yuanshan She, Feixiang Chen, Hongbo Gao, and Qingliang Yu. “Rheology-Control and Shrinkage-Mitigation of 3D Printed Geopolymer Concrete Using Nano-Cellulose and Magnesium-Oxide”. Construction and Building Materials 429 (2024): 136421. https://doi.org/10.1016/j.conbuildmat.2024.136421.